TTTTTTTTTTTTTTTTTTTTT

Reasoning ano
Programming with Commutativity

Eric Koskinen
Stevens Institute of Technology
www.erickoskinen.com

MIT ¢ Monday, May 9, 2022


http://www.erickoskinen.com

» Register

JAlso Available_,

Search the database for

All
(Got)

V]

More searches | Tips

IMDbPro.com free trial

Road

e Globe winners
o Critics list

* Award W
o the e

* Polls
Tops at the Box Office

® Darkness Falls

© Kangaroo Jack
© Chicago

© National Security
© Just Married

B more

Opening this Week

* The Recruit
+ Final Destination
- Biker Boyz
- Lost in La Mancha
* May,

B more

Coming Soon

How to Lose a Guy
- Shanghai Knights
* Deliver Us from Eva
+ Daredevil
+ The Jungle Book 2

- Max
= S A A~ ey | e

MOVIE/TV
NEWS

MESSAGE
BOARDS

IMDbPro

SHOWTIMES

Top
Movies

&

IMDbPro.com, the new website for the entertainment industry, now features over
22,000 agent/contact listings. Click here for a free trial.

Independent

Photo |
Film

Galleries

The Internet Movie Database

Visited by over 13 million movie lovers each month!

| Browse |

Video/DVD
Video/DVD IMDb

"™ Contact Information for Over 22,000
Professionals on IMDbPro.com
If you're looking for agent contact information

Audrey Tautou
Page 20 af 20

HMain detads
A7

“Mam drtaths Pilmograshy
Contact information

S Tl "™ for industry professionals, IMDbPro.com has
o e w7 CcONtact data for over 22,000 names and the
e fwemte . information is being added to and updated

daily. If you're looking for company contact
information, international, domestic and daily box-office numbers,
IMDbPro.com is the site for you. If you're looking for news and film
reviews from the Hollywood Reporter, IMDbPro.com is where you need
to go. Try IMDbPro.com for free for two weeks. Click here for details.

Today's IMDb Poll Question lIs:
It bothers me the most that.... (Vote for your favorite actors and
= films of 2002 with our new and improved 2002 poll.) (vote)

SAG Nominees in Road to the Oscars

It's getting hotter and hotter in the Windy City, as the
razzle-dazzle musical Chicago made off with five
nominations from the Screen Actors Guild Awards,
including Best Performance by a Cast in a Motion
Picture. Read more about the SAG awards in our
Road to the Oscars® section. You'll also find other
awards news and Oscar® trivia and quotes from
Oscar®-nominated films. Best of all, have your say
and cast vour ballot in our new and improved Best of 2002 Poll. It's all on

Movie and TV News

Wed January 29, 2003:
Celebrity News

* Townshend: Email Will
Clear Me

* Britney Dumps Durst for
Farrell

* Crowe to Miss BAFTAs
Studio Briefing

* SAG Nods Go to
'Chicago,' "The Hours'

* Eisner Getting $5-Million
Stock Bonus

* O'Toole Rejects Oscar;
Academy Says He Earned
It

Celzbrity Interviews/Articles
* Adaptation Filmmakers
* Glen Keane - Treasure

Planet

Cool Feature! =

Happy Birthday to:

Thursday, January 30, 2003:
* Christian Bale (29)
* Gene Hackman (73)
* Wilmer Valderrama (23)
* Vanessa Redgrave (66)
B more birthdays

Cool Services
* Daily Newsletter

* Contact IMDb.com




Tus) STEVENS

INSTITUTE of TECHNOLOGY

Imnh®

Can we serve web pages faster?



)=

)
i

Sl )

eflis

&

=7

STEVENS

INSTITUTE of TECHNOLOGY

IMBh®

Can we serve web pages faster?

thttpd - tiny/turbo/throttling HTTP server

Fetch the software. Release notes.

thttpd is a simple, small, portable, fast, and secure HTTP server. “

Simple: =
It handles only the minimum necessary to implement HTTP/1.1. Well, maybe a little more than the minimum.
Small:
See the comparison chart. It also has a very small run-time size, since it does not fork and is very careful
about memory allocation.
Portable:
It compiles cleanly on most any Unix-like OS, specifically including FreeBSD, SunOS 4, Solaris 2, BSD/OS,
Linux, OSF.
Fast:
In typical use it's about as fast as the best full-featured servers (Apache, NCSA, Netscape). Under extreme
load it's much faster.
Secure:
It goes to great lengths to protect the web server machine against attacks and breakins from other sites.

It also has one extremely useful feature (URL-traffic-based throttling) that no other server currently has. Plus, it
supports |Pv6 out of the box, no patching required.
More specific info:

e HTMLized man page

~ ladimal s Aadas




@ of TECHNOLOGY

Let me try to write something faster myself.

Wow, concurrency is hard!

Why does writing concurrent programs have to be so hard?



STEVENS

INSTITUTE of TECHNOLOGY

Transactional Boosting: A Methodology for
Highly-Concurrent Transactional Objects

Maurice Herlihy  Eric Koskinen

Computer Science Department, Brown University
{mph,ejk}@cs.brown.edu

Abstract Synchronizing via read/write conflicts has one substantial ad-
vantage: it can be done automatically without programmer partici-
pation. It also has a substantial disadvantage: it can severely and un-
necessarily restrict concurrency for certain shared objects. If these
objects are subject to high levels of contention (that is, they are
“hot-spots”), then the performance of the system as a whole may
suffer.

Here is a simple example. Consider a mutable set of integers
that provides add(x), remove(z) and contains(z) methods with
the obvious meanings. Suppose we implement the set as a sorted

We describe a methodology for transforming a large class of
highly-concurrent linearizable objects into highly-concurrent trans-
actional objects. As long as the linearizable implementation satis-
fies certain regularity properties (informally, that every method has
an inverse), we define a simple wrapper for the linearizable im-
plementation that guarantees that concurrent transactions without
inherent conflicts can synchronize at the same granularity as the
original linearizable implementation.

Categories and Subject Descriptors D.1.3 [Programming Tech- linked list in the usual way. Each list node has two fields, an integer
niques]: Concurrent Programming — Parallel Programming; D.3.3 value and a node reference next. List nodes are sorted by value,
[Programming Languages]: Language Constructs and Features and values are not duplicated. Integer z is in the set if and only if
— Frameworks; Concurrent programming structures; E.1 [Data a list node has value field z. The add(x) method reads along the
Structures]: Distributed data structures; F.3.1 [Logics and Mean- list until it encounters the largest value les

ings of Programs]: Specifying and Verifying and Reasoning about absent, it creates a node to hold z, and li

Programs Consider a set whose state is {1, 3,5 PPoPP 2008

General Terme Alcorithme T anonacee Theorv to add 2 to the set and transaction B is abotrs




STEVENS

@ INSTITUTE of TECHNOLOGY

Eric Koskinen

University of Cambridge

fer from overly con-
POPL 201 0 H false conflicts, be-
read/write conflicts.
oward integrating various
abstract data-type 11brar1es usmg ad hoc methods of high-level con-
flict detection. These proposals have led to improved performance
but a lack of a unified theory has led to confusion in the literature.
We clarify these recent proposals by defining a generaliza-
tion of transactional memory in which a transaction consists of
coarse-grained (abstract data-type) operations rather than simple
memory read/write operations. We provide semantics for both pes-
simistic (e.g. transactional boosting) and optimistic (e.g. traditional

Matthew Parkinson
University of Cambridge

Maurice Herlihy

Brown University

Transactional Boosting: A Methodology for
Hichlv.Cancunrrent Trancactional Objects

Coarse-Grained Transactions

yskinen

n University

the locationg
it wrote. Twi
intersects thg
conflict to by
easy to clas
reads or writ|

Neverthe]
conflicts sup
ject to conter
is conservati
flict even tho
threads inser]
neither one s|

laction tuna Jl

The Push/Pull Model of Transactions

Eric Koskinen *
IBM TJ Watson Research Center, USA

PLDI 2015

Matthew Parkinson
Microsoft Research Cambridge, U

TMs an|
cluded

imposes
pessimi
right-m

e Adding Concurrency to Smart Contracts

Categor
Techniq

ming; Thomas Dickerson

and T
Langua

Brown University

languag thomas_dickerson@brown.edu

structs 4
[Logics

Languaj Maurice Her llhy

-

PODC 2017

Paul Gazzillo
Yale University
paul.gazzillo@yale.edu

Eric Koskmen

-y 1

hared memory should appear t
y another thread.

such a construct, we must be

ementations typically achieve
cts between concurrent threads
'y operations in hardware [14H
wwhile, an alternate approach e
ict over linearizable data-struc
ty (11 130]. Both level
pptimistic execution, pessimist
. Finally, there are multiple nc




STEVENS

)\
=
1N
&Ml il i
kv INSTITUTE of TECHNOLOGY

Still have to write concurrent programs.

Oh the dream of parallelizing compilers!



STEVENS

Y
&Ml il i
kv INSTITUTE of TECHNOLOGY

Still have to write concurrent programs.

Oh the dream of parallelizing compilers!

Commutativity Analysis: A New Analysis Technique
for Parallelizing Compilers

MARTIN C. RINARD

Massachusetts Institute of Technology

and

PEDRO C. DINIZ

University of Southern California / Information Sciences Institute

This article presents a new analysis technique, commutativity analysis, for automatically paral-
lelizing computations that manipulate dynamic, pointer-based data structures. Commutativity

analyreic xriewvre the comniitation ac coamnnaeced AF anaratione an nhiccte T+ then analsrree +the nros




STEVENS

A
&
Sy
§ ii il iy
kv TTTTTTTTTT f TECHNOLOGY

Wanted to understand program analysis better...

* Moved to Cambridge, UK

* Dissertation on program analysis for temporal
logic verification

e Abstraction-refinement, automata, ...

e Started to think more and more about how



STEVENS

A
&
Sy
§ ii il iy
kv TTTTTTTTTT f TECHNOLOGY

Wanted to understand program analysis better...

* Moved to Cambridge, UK

* Dissertation on program analysis for temporal

logic verification
e Abstraction-refinement, automata, ...

e Started to think more and more about how

Symbolic program analysis

could enable

parallelization



ﬂﬁq STEVENS

INSTITUTE of TECHNOLOGY
THE INNOVATION UNIVERSITY®

Highest amount of cores per CPU (AMD vs Intel year by year)

2000 2002 2004 2006 2003 2010 2012 2014 2016 2013

Year



¥ .= STEVENS

I
k INSTITUTE OfTECHNOLOGY

8-core CPU

I'he highest-performance CPU

we've ever bullt.

Up to

3.5x

faster CPU

performance’




J|
=

LN

.5 STEVENS
@ TTTTTTTTTT f TECHNOLOGY

Automatic parallelization

sum = Q;

#pragma omp parallel for shared(sum, a) reduction(+: sum)
for (auto 1 = 0; i < 10; i++)

{
}

sum += alil:

http://jakascorner.com/blog/2016/06/omp-for-reduction.html



INSSTEVENS

TITUTE of TECHNOLOGY

ﬁé;

Automatic parallelization

sum = 0;
#pragma omp parallel for shared(sum, a) reduction(+: sum)
for (auto i = 0; i < 10; i++)

{
}

sum += alil;

Exploits

Commutativity

http://jakascorner.com/blog/2016/06/omp-for-reduction.html



="

i
Sl )

kv of TECHNOLOGY

Automatic parallelization

sum = @;
#pragma omp parallel for shared(sum, a) reduction(+: sum)
for (auto 1 = 0; i < 10; i++)

{
}

sum += alil:

Commutativity is a well-known strategy for concurrency.

e Databases. e.g. Weihl 1988.
e Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.
e Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

e Transactional memory. e.g. Ni et al., PPoPP 2007. Herliny & Koskinen, PPoPP 2008.

Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

e Runtime systems. e.g. Tripp et al, OOPSLA 2011.
e Software scalability. e.g. Clements et al., TOCS 2015.

e Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.
http://jakascorner.com/blog/2016/06/omp-for-reduction.html



STEVENS

ECHNOLOGY

Automatic parallelization

sum = Q;

#pragma omp parallel for shared(sum, a) reduction(+: sum)
for (auto 1 = 0; i < 10; i++)

{
}

sum += alil:

Commutativity is a well-known strategy for concurrency.

T | Weini 198s.
' fompilers. e.g. Rinard & Diniz, TOPLAS 1997.
__J algorithms. e.g. Kulkarni et al, PLDI 2007.

o Transactlonal memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.

Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

e Runtime systems. e.g. Tripp et al, OOPSLA 2011.
e Software scalability. e.g. Clements et al., TOCS 2015.
e Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.



=

e [

kv INSTITUTE of TECHNOLOGY

Automatic parallelization

sum = @;
#pragma omp parallel for shared(sum, a) reduction(+: sum)
for (auto 1 = 0; i < 10; i++)

{
}

sum += alil:

Commutativity is a well-known strategy for concurrency.

fompilers. e Commutativity Analysis: A New Analysis Technique
— ) algorithm| for Parallelizing Compilers

o — I

 Transactional memory. el arTIN c. RINARD

Bronson et al., PODC 2010. Has{ Massachusetts Institute of Technology

Dickerson et al., APLAS 2019. and
PEDRO C. DINIZ

° Runtime SyStemS. €.g. Trip University of Southern California / Information Sciences Institute
e Software scalability. e.g. ¢

® Laye red concu rrent pros This article presents a new analysis technique, commutativity analysis, for automatically paral-

lelizing computations that manipulate dynamic, pointer-based data structures. Commutativity
analysis views the computation as composed of operations on objects. It then analyzes the pro-

oram at+ thie oraninilarity +a diccaver when aneratione commiite ( o conerate +he ecame fnal raciils




STEVENS

INSTITUTE of TECHNOLOGY

Automatic parallelization

sum = Q;

#pragma omp parallel for shared(sum, a) reduction(+: sum)
for (auto 1 = 0; i < 10; i++)

{
}

sum += alil:

Commutativity is a well-known strategy for concurrency.

» | Weini 1988.

tompilers. ¢
. __jalgorithm

— . e

e Transactional memory. e

— e g g P

Commutativity Analysis: A New Analysis Technique
for Parallelizing Compilers

MARTIN C. RINARD

o o of Technology
The Scalable Commutativity Rule: Designing Scalable Software

for Multicore Processors

AUSTIN T. CLEMENTS, M. FRANS KAASHOEK, NICKOLAI ZELDOVICH,
and ROBERT T. MORRIS, MIT CSAIL

Lalifornia / Information Sciences Institute
EDDIE KOHLER, Harvard University

What opportunities for multicore scalability are latent in software interfaces, such as system call APIs?

Can scalability challenges and opportunities be identified even before any implementation exists, simply
by considering interface specifications? To answer these questions, we introduce the scalable commutativity
rule: whenever interface operations commaute, they can be implemented in a way that scales. This rule is
useful throughout the development process for scalable multicore software, from the interface design through

analysis technique, commutativity analysis, for automatically paral-
manipulate dynamic, pointer-based data structures. Commutativity

ition as composed of operations on objects. It then analyzes the pro-

diccover when anaratinne commiite (1 e conoerate +he ecame fnal raciilt



STEVENS

INSTITUTE of TECHNOLOGY

Automatic parallelization

sum = Q;

for (auto 1 =0; i < 10;

{
}

sum += alil;

#pragma omp parallel for shared(sum, a) reduction(+:
i++)

sum)

Commutativity is a well-known strategy for concurrency.

e Transac

" MIT CSAIL

The Scalable Comn| ! Introduction

for Multicore Proced This paperexplains a flaw in the published proof of the Scal-
able Commutativity Rule (SCR) [1], presents a revised and
formally verified proof of the SCR in the Coq proof assistant,
and discusses the insights and open questions raised from our
experience proving the SCR.

2 The Scalable Commutativity Rule

In order to explore the connection between commutativity
and scalability in practical systems, Clements et al. [1] de-
fined a new type of commutativity called SIM commuta-
tivity, a property that can hold of certain interface spec-
ifications. This was used to state and prove the Scalable
Commutativity Rule (SCR), which claims that every SIM-

AUSTIN T. CLEMENTS, |
and ROBERT T. MORRIS
EDDIE KOHLER, Harvard

What opportunities for multis
Can scalability challenges an
by considering interface specif]
rule: whenever interface operd
useful throughout the developi

A Revised and Verified Proof of the Scalable Commutativity Rule

Lillian Tsai! Eddie Kohler* M. Frans Kaashoek! and Nickolai Zeldovich'

* Harvard University

A specification models an interface’s behavior as a prefix-
closed set of well-formed histories. A system execution is
“correct” according to the specification if its trace is included
in the specification. For instance, if .# corresponded to the
POSIX specification, then [getpid ,92,] € .# (a process
may have PID 92) but [getpid , ENOENT,,] ¢ .# (the get-
pid() system call may not return that error). A specification
constrains both invocations and responses: [NtAddAtom,,|
is not in the POSIX specification because NtAddAtom is
not a POSIX system call.

An implementation is an abstract machine that takes in-
vocations and calculates responses. The original proof of
the SCR by Clements et al. [1] (also presented in Sec-
tion 2.4) uses a class of machines on which conflict-freedom

Q. SR, . B, Maata o

e o S o o W . o, & Bnaik b cad i 2R o e RalR

\nalysis Technique

s Institute

y analysis, for automatically paral-
d data structures. Commutativity
objects. It then analyzes the pro-

(i o ocenerate +the ecame Bnal reciilt



i3 STEVENS

INSTITUTE of TECHNOLOGY

Automatic parallelization

sum = Q;

for (auto i = 0;

{
}

sum += alil;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

i < 10; i++)

Commutativity is a well-known strategy for concurrency.

A Revised and Verified Proof of the Scalable Commutativity Rule

Lillian Tsai! Eddie Kohler* M. Frans Kaashoek! and Nickolai Zeldovich'

" MIT CSAIL * Harvard University

\nalysis Technique

e Transac

The Scalable Comn{ ! Introduction

for Multicore Proceq This paper explains ;
able Commutativity
AUSTIN T. CLEMENTS, | formally verified prq
and ROBERT T. MORRIq 2"d discusses the ing
EDDIE KOHLER, Harvard| C Perienceproving|
2 The Scalabld

In order to explore
What opportunities for multi{ and scalability in pr
Can scalability challenges an| fined a new type o
by considering interface speciff  rtivity,’ a property t
rule: whenever interface operd ifications. This was|
useful throughout the developf Commutativity Rulg

ScaleFS: A Multicore-Scalable File System

Rasha Eqgbal

B.Tech.(Hons.) in Computer Science and Engineering

rally paral-
mutativity

Indian Institute of Technology Kharagpur (2011)

es the pro-

Anal reaciilt



STEVENS

&Ml il i
kv INSTITUTE of TECHNOLOGY

Automatic parallelization

sum = 0;
#pragma omp parallel for shared(sum, a) reduction(+: sum)
for (auto i = 0; i < 10; i++)

{
}

sum += alil;

Commutativity is a well-known strategy for concurrency.

A Revised and Verified Proof of the Scalable Commutativity Rule \na IySIS Tech nique

T e Lillian Tsai! Eddie Kohler* M. Frans Kaashoek! and Nickolai Zeldovich'
" MIT CSAIL * Harvard University
e Transac

The Scalable Comn{ ! Introduction

for Multicore Proceq This paper explains; . .
S ectnally veclfadses ScaleFS: A Multicore-Scalable File System
AUSTIN T. CLEMENTS, |  formally verified prg
and ROBERT T. MORRIg "4 discusses the ins
EDDIE KOHLER, Harvard| “Perienceproving |
2 The Scalablq

In order to explore Verifying concurrent software using movers in CSPE(
What opportunities for multi{ and scalability in pr
Can scalability challenges an| fined a new type o
by considering interface speciff tivity,' a property t Tej Chajed, M. Frans Kaashoek, Butler Lampson! and Nickolai Zeldovich

rule: whenever interface operd ifications. This was|

useful throughout the developy ~ Commutativity Ruld MIT CSAIL and "M icrosoft Research




i8] STEVENS

i
TTTTTTTTTT f TECHNOLOGY
NNNNNNNNNNNNNNNNNNNNNNNN

Automatic parallelization




x = calcl(a);
C c + (xxx);
if (c >0 & y < 0) {
C c - 1;
z = calc2(y);
} else {
z = calc3(y);
s




Ty STEVENS :

@ TTTTTTTTTTTTTTTTTTTTT . Expensive, pure
X calcl(a); computation
C = Cc + (xxx);

if (c >0 && y < 0) {

c=c¢c-1;
z = calc2(y);
} else {

z = calc3(y);

}




i8] STEVEN

TTTTTTTTTT f TECHNOLOGY
THE INNOVATION UNIVERSITY®

x = calcl(a);

Expensive, pure
computation
C = C + (xkx):

if (c >0 && y < 0) {

c =c - 1;
2 Glaiys
pure computation
} else {

z = calc3(y);
+




@ . Expensive, pure
k X = calcl(a ) computation
C = C + (X*X)'

C = C 1;

2 Sy
1 else {

Z

= calc3(y);
I3

Can we run them in parallel?
Let’s try separating splitting the code.

Wouldn’t it be nice if we could parallelize these two blocks?



\
=
i

N
iy
i

kv TTTTTTTTTT f TECHNOLOGY

calcl(a);
C + (x*%x):

if (c >0 & y < 0) {

cCc=c¢c - 1;
z = calc2(y);
} else {

z = calc3(y);
¥

Can we run them in parallel?



I\
=

N

i) STEVENS

kv TTTTTTTTTT f TECHNOLOGY

Observation on C

calcl(a);
C + (x*%x):

X
C

if (c >0 & y < 0) {

cCc=c¢c - 1;
z = calc2(y);
} else {

z = calc3(y);
¥

Can we run them in parallel?




i STEVENS

kv TTTTTTTTTTTTTTTTTTTT

Mutation of C

Observation on C

X
[l

calcl(a);
C + (x*%x):

(@)
[l

if (c >0 & y < 0) {

c=c¢c-1,;
z = calc2(y);
} else {

z = calc3(y);
¥

Can we run them in parallel?




calcl(a);
C + (x*%x):

(@)
[l

Mutation of C

if (c >0 & y < 0) {

c =cCc - 1;
5 | z = calc2(y);
bservation on C } else {

z = calc3(y);

}

Can we run them in parallel?

A simple dataflow analysis cannot parallelize them.
Dataflow dependency prevents naive parallelization.

Splitting differently doesn’t help; x conflicts.



$ STEVENS
L x = calcl(a);
C C + (x%x);

if (c >0 & y < 0) {
C c - 1;
z = calc2(y);
} else {
z = calc3(y);
b

N Idea: Making commutativity explicit can allow us
> ~— to weaken the dataflow dependency.

Consider: what if >0 initially?
Then these blocks are semantically independent.

(with some atomicity assumptions)



$ STEVENS
L x = calcl(a);
C C + (x%x);

if (c >0 & y < 0) {
C c - 1;
z = calc2(y);
} else {
z = calc3(y);
b

N Idea: Making commutativity explicit can allow us
> ~— to weaken the dataflow dependency.

Consider: what if >0 initially?
Then these blocks are semantically independent.

(with some atomicity assumptions)



fi5) STEVENS

@ x = calcl(a);
C C + (x*%x):

if (c >0 & y < 0) {
C c - 1;
z = calc2(y);
} else {
z = calc3(y);
b

N Idea: Making commutativity explicit can allow us
> ~— to weaken the dataflow dependency.

Consider: what if >0 initially?
Then these blocks are semantically independent.

(with some atomicity assumptions)



N
>, |||
|'|

>

INSTITUTE o fTE

OOOOOOOO

calcl(a);
C + (x*%x):

X
C

if (c >0 & y < 0) {
C c - 1;
z = calc2(y);
} else {
z = calc3(y);
b

/ Idea: Making commutativity explicit can allow us
~— to weaken the dataflow dependency.

Allow the programmer to explicitly express
conditional, sequential commutativity.

Introduce the commute keyword.

Programmer only has to reason sequentially.
Verification tools need only reason sequentially.
Obtain speedup from parallel execution.




v

TTTTTTTTTTTT

)nm, STEVENS commute (C>0) {

OOOOOOOO {

calcl(a);
C + (x*%x): 1

C

1 |if (c>0&&y<@){

; }

/ Idea: Making commutativity explicit can allow us
~— to weaken the dataflow dependency.

Allow the programmer to explicitly express
conditional, sequential commutativity.

Introduce the commute keyword.

Programmer only has to reason sequentially.
Verification tools need only reason sequentially.
Obtain speedup from parallel execution.




i) STEVENS

GY

kv TTTTTTTTTTTTTTTTTTT

if(c>0)

calcl(a);
C + (xxx):

X
C

if (c >0 & y < 0)

c=c¢c - 1;

z = calc2(y);
} else {

z = calc3(y);
b
x = calcl(a);
C:C+(X*X);
if (c >0 & y < 0)

c=c¢c-1;

z = calc2(y);
} else {




i) STEVENS

TTTTTTTTTTTTTTTTTTTTT

>

if(c>0)

if (c >0 && y < 0) {

cCc=c¢c - 1;

z = calc2(y);
} else {

z = calc3(y);
b
x = calcl(a);
C:C+(X*X);
if (c>06&5y < 0) {

C=C—1;

z = calc2(y);
} else {

z = calc3(y);
s

@)

calcl(a);
C + (x%x);:




)ﬁh STEVENS commute (c>0) A

W TTTTTTTTTTTTTTTTTTTTT
& 1 [x calcl(a);
C C + (x*%x):

1if (c >0 && y < 0) {

cCc=c¢c - 1;
z = calc2(y);
} else {

z = calc3(y);

}




)ﬁh STEVENS commute (c>0) A

@ 1 [x calcl(a);
C C + (x*%x);

Semantics?

1if (c >0 && y < 0) {

cCc=c¢c - 1;
z = calc2(y);
} else {

z = calc3(y);

}




iS5 STEVENS

kv TTTTTTTTTTTTTTTTTTTTT
p

Semantics?

{

Synchronization? J/

commute (c>0) {

calcl(a);
C + (xxx):

X
C

if (c>08& y < 0) {
1-

/C=C_l
z = calc2(y);
} else {
z = calc3(y);

}




iS5 STEVENS

2

Semantics?

{

Synchronization? J/

commute (c>0)_{

calcl(a);
C + (xxx):

X
C

=

if (c>08& y < 0) {
1-

/C=C_l
z = calc2(y);
} else {
z = calc3(y);

}

q Correct?




N
I
i

@ TTTTTTTTTT f TECHNOLOGY {
p

Semantics?

{

Synchronization? J/

sy STEVENS commute (C>@~)\\‘{

X
C

calcl(a);
C + (x*%x):

=

q Correct?

/C
Z

if (c >0 & y < 0) {
_1;
alc2(y);

C
C
} else {

}

z = calc3(y);

Speedup?




Introducing commute blocks

Semantic Implications & Correctness Criteria “S‘;zge,gcie;;an’;fe@’;’fy )
Demo of the Veracity language veracity-lang.org
Speedup
Part B:

5 Symbolic Commutativity Reasoning TACAS'18, JAR'20, VMCAI'21

6 Inferring/verifying commute blocks Translation to logic




N
>, |||
il

Kv“;“ STEVENS 2. Semantic Implications & Correctness Criteria

Want to parallelize a program s.

We can do so soundly when the parallel behavior
matches that of its equivalent straight-line code:

[[S]]nd — [[S]]par

Outcome: Get gains without changing
the way we write sequential programs.



5
4)\

Kv";“ STEVENS 2 Semantic Implications & Correctness Criteria

Sequential Behavior: non-deterministic

> J (513555, O)
(commute(true){s, }{s,}, o) &

W d (82351, 0)



\
=
i

LN
_aliy
(]

Kv“;“ STEVENS 2. Semantic Implications & Correctness Criteria

Sequential Behavior: non-deterministic

> J (513555, O)
(commute(true){s, }{s,}, o) &

W)nd <S2;S1’0>
Parallel Behavior: Interleaved, as expected:

<CommUte(true){S1 } {S2}9 0) W)par <(<Sl’ ®>9 <S29 ®>’ )9 Skipa G>

6() b o 2 par ({(,) ® o’ Left-Proj

(€, €1),s,0) ~par (€], €),s,0") (mut. mut.) R-Proj
(Full semantics in the paper)




&

2

P
‘k I;B" i“

STEVENS 2. Semantic Implications & Correctne

ss Criteria

Sequential Behavior: non-deterministic

(commute(true){s,}{s,}, o

Want equivalence
(as state fns)

Parallel Behavior: Interleaved, as expecteg:

(commute(true){s,}{s,}, 0> par ({51, D), (52, D), ), SKIp, )

Co® o ~par § &0’ Left-Proj
(€, €),5,0) ~par (€], €y),s,0") (mut. mut.) R-Proj

(Full semantics in the paper)




2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]pa,,

How to ensure equivalance.

Serializability?



Kv“;“ STEVENS 2 Semantic Implications & Correctness Criteria

y = 0; x = 1;

Goal: [[S]]nd — [[S]]par commute(true) {
{ commute(true)
- f1:{ X = 0; }
How to ensure equivalance. B4 x = xx2: 1)
Serializability? fi:{ 1if(x>=2) y = 1; }

}




Kv“;“ STEVENS 2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]pa,,

How to ensure equivalance.

Serializability?

. commute

(true)

commute

(true)

}

y = 0; x = 1;
commute(true) {

{ commute(true)
fi.{ x = 0; }
fr:{ X = x*2;
f5:{ if(x>=2) y =

s
1; }

[x=x*2][1f(x=2)y=1]° [x= O]x

f>

f3

f]




2. Semantic Implications & Correctness Criteria

y = 0; x = 1;

Goal: [[S]]nd = [[S]]par commute(true) {
{ commute(true)
How to ensure equivalance. fid x = 0; J
f:{ X = xx2; }}
Serializability? fi:{ 1if(x>=2) y = 1; }
s
_ commute
(true) ¢ 1

commute Serializability is not the right condition.
(true)

[x=x*2] * [1f (x22)y=1] * [x=0]
b f3 f1




@ STEVENS 2 Semantic Implications & Correctness Criteria

Goal: [[S]]nd = [[S]]pa,,

How to ensure equivalance.

Serializability?

y =0; x =1;
commute(true) {
{ commute(true)
fii{ x = 03 }

f3:1 1f(x>=2) y =

fr:{ X = x%2; }}
1; &

_ commute
(true)
commute
(true)
_>f3

Serializability is not the right condition.

[x=x*2][1f(x=2)y=1]° [x= O]x

f>

f3

f]




@ STEVENS 2 Semantic Implications & Correctness Criteria

y = 0; x =1,

Goal: [[S]]nd = [[S]]pa,, commute(true) {
{ commute(true)
How to ensure equivalance. filt X = 0; }
‘G fHh:{ x = x*x23 }}
Serializability? }f31{ 1f(x>=2) y = 1; }
commute
(true) ¢ l
commute Serializability is not the right condition.
(true)

[x=x*2] ¢ [1f(x22)y=1] * [x= O]x< ~fzcan (?bserve
f> f3 £ intermediate x>=2




@ STEVENS 2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]pa,,

How to ensure equivalance.

5.2 Scoped Serializability
We now define our correctness condition. We begin with a single execution:
Definition 5.2 (Scoped serial execution). Execution ¢ is scoped serial if:

Vpe{L,,R, | neN}*":
((Ve, ¢’ €ee: t.frhasprefixp: - Ly A€’ .frhasprefixp - Ry = € <. ')
V(VE, ¢ €ee: f.frhasprefixp- Lg A€’ .frhasprefixp- Ry = ¢’ <. 1))

Above, ¢.fr is the fragment label of ¢. The key idea here is to identify the scope of commute
fragments through labels, and then require a serializability condition for the L/R pair of the given

scone Consider e o a sincle commute block pos<iblv with children For an execution to be sconed-

Intuition: There exists a reordering of every interleaving
iInto a serial order H in which pairs of commute blocks
are adjacent in H.




Kv“;“ STEVENS 2 Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):;
c + (xxx);

X
C

if (c >0 && y < 0) 1

Cc =cCc - 1;
z = calc2(y);
} else {

z = calc3(y);

}




5
4)\

Kv“;“ STEVENS 2 Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a);

e Synthesize Locks! X
c + (xxx);

C

if (c >0 && y < 0) 1

c=c¢c - 1;
z = calc2(y);
} else {

z = calc3(y);

}




Kv“;“ STEVENS 2 Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):

e Synthesize Locks!
C + (X*X); unlock

X
lock | C

lock[if (c > 0 && yl< @) {

- 1; ’ unlock




2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):

e Synthesize Locks!

e Use prior works. e.g. Flanagan & Qadeer

X
lock|C = C + (Xx*kX) ;] unlock

2003, Cherem et al 2008, Vechev et al 2010, -
Golan-Gueta et al 2015. lock|if (C > 0 & Y < 0) {

c =c¢c - 1; unlock
z = calc2(y);

} else {
z = calc3(y);

s




2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):

e Synthesize Locks!

e Use prior works. e.g. Flanagan & Qadeer

X
lock|C = C + (Xx*kX) ;] unlock

2003, Cherem et al 2008, Vechev et al 2010, -
Golan-Gueta et al 2015. lock|if (C > 0 & Y < 0) {

c =c¢c - 1; unlock
z = calc2(y);

} else {
z = calc3(y);

s

* Not ideal for commute blocks.




2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):

e Synthesize Locks!

e Use prior works. e.g. Flanagan & Qadeer

X
lock|C = C + (Xx*kX) ;] unlock

2003, Cherem et al 2008, Vechev et al 2010, -
Golan-Gueta et al 2015. lock|if (C > 0 & Y < 0) {

c=c¢c - 1: unlock

| _ z = calc2(y);
e We describe new techniques: L else {

* Not ideal for commute blocks.

z = calc3(y);

}




2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):

e Synthesize Locks! X
lock|C = C + (Xx*kX) ;] unlock

e Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010, -
Golan-Gueta et al 2015. lock|if (C > 0 & Y < 0) {

c=c¢c - 1: unlock

| _ z = calc2(y);
e We describe new techniques: L else {

* Achieve shorter windows of locking 7 = calc3 ( Y ) .

} =

* Not ideal for commute blocks.




2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):

e Synthesize Locks! X
lock|C = C + (Xx*kX) ;] unlock

e Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010, -
Golan-Gueta et al 2015. lock|if (C > 0 & Y < 0) {

c=c¢c - 1: unlock

| _ z = calc2(y);
e We describe new techniques: L else {

* Achieve shorter windows of locking 7 = calc3 ( Y ) .

* Not ideal for commute blocks.

* |nstruction re-ordering }




2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

calcl(a):

e Synthesize Locks!

X
_ lock|C = C + (Xx*kX) ;] unlock
e Use prior works. e.g. Flanagan & Qadeer -

2003, Cherem et al 2008, Vechev et al 2010, -
Golan-Gueta et al 2015. lock|if (C > 0 & Y < 0) {

c =c - 1; unlock
z = calc2(y);

* Not ideal for commute blocks.

e We describe new techniques: 1 else {
* Achieve shorter windows of locking 7 = calc3 ( y ) .
* |nstruction re-ordering }

e Details in the paper



2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

Theorem 5.5. If
® cvery commutativity condition 1n s 1s valid,
® and s 1s scoped-serializable,

Then s is parallelizable, ie, [[s]l,; = [[s]l

par



2. Semantic Implications & Correctness Criteria

Goal: [s],, = [[S]]par

How to ensure equivalance.
= How to enforce scoped serializability.

Theorem 5.5. If

® cvery commutativity condition 1n s 1s valid,<Z ( ?“/
® and s 1s scoped-serializable,

Then s is parallelizable, ie, [[s]l,; = [[s]l

par



Demo of the Veracity language veracity-lang.org
Speedup
Part B:

5 Symbolic Commutativity Reasoning TACAS'18, JAR'20, VMCAI'21

6 Inferring/verifying commute blocks Translation to logic




fim) STEVENS

@ TTTTTTTTTT f TECHNOLOGY

Veraedt




fim) STEVENS

K@ TTTTTTTTTT f TECHNOLOGY

Veraedt

e New language, implemented in Multicore OCami



fiin] STEVENS

K@ INSTITUTE of TECHNOLOGY

Veraedt

e New language, implemented in Multicore OCami

* Interpreter available. Compiler planned.



.NSSTTEVENS

ITUTE of TECHNOLOGY

Veraedd

e New language, implemented in Multicore OCami
* Interpreter available. Compiler planned.

e Support for builtin ADTs. Arrays, Maps/Dictionaries.



.NSST’.ETEVENS

E of TECHNOLOGY

A
0y
i \
ik ;@“ g

Veraedd

e New language, implemented in Multicore OCami
* Interpreter available. Compiler planned.
e Support for builtin ADTSs. Arrays, Maps/Dictionaries.

e libcuckoo for parallel maps. Li et al, EuroSys 2014.



.NSST’.ETEVENS

E of TECHNOLOGY

A

0y

i \
ik ;@“ g

Veraedd

e New language, implemented in Multicore OCaml
* Interpreter available. Compiler planned.

e Support for builtin ADTSs. Arrays, Maps/Dictionaries.

e libcuckoo for parallel maps. Li et al, EuroSys 2014.

e Underlying SMT solvers. cvc4, CvCs, Z3.



éaiQIEVENS

E of TECHNOLOGY

Veraedd

New language, implemented in Multicore OCaml
Interpreter available. Compiler planned.

Support for builtin ADTs. Arrays, Maps/Dictionaries.
libcuckoo for parallel maps. Li et al, EuroSys 2014.
Underlying SMT solvers. cvC4, CVC5, Z3.

Examples were written in Veracity. Execute or inference.



é¢i§EEVENS

E of TECHNOLOGY

Veraedd

e New language, implemented in Multicore OCaml
* Interpreter available. Compiler planned.

e Support for builtin ADTSs. Arrays, Maps/Dictionaries.

e libcuckoo for parallel maps. Li et al, EuroSys 2014.
 Underlying SMT solvers. cvc4, cves, Z3.

e Examples were written in Veracity. Execute or inference.

ejk@arran: $ ./vcy.exe interp ../benchmarks/ht-cond-mem—get.vcy 1 2 3 4 5

Return: 0
ejk@arran: $




fum) STEVENS

(]
Kv INSTITUTE of TECHNOLOGY

Evaluation: Speedup versus problem size

2.0

O

Q

2

@

P 15

|

Q.

=

L®;

@ 1.0

Q

Q.

7

c

O

S 05

(&

QD

>

LLl
0.0

10

10°

Problem Size (logrithmic scale)

10°

—e—dihedral
—e—ht-fizz-buzz
—a— loop-disjoint
—o— loop-amt

—u— loop-inter
—— loop-simple

- - =nested

....... nested-counter
arrayl

array?2

array3
array-disjoint
calc
conditional
counter
dot-product
even-odd

— ht-add-put
——ht-cond-size-get
linear
linear-bool
linear-cond
matrix
nonlinear
simple

dict
——ht-cond-mem-get
——nht-simple

w,
Grouped by performance.

%/‘Wl/ www.veracity-lang.org



5 STEVENS ’

Programming with Co utativity

y = -

Secure | veracity-lang.org Q@ v 0O @ Incognito (2)

Express conditional
commutativity.

Parallel speedup
with sequential
reasoning.

Declarative Multicore Programming
with Commutativity

1 int main(int argc, string[] argv) (

2 int int_of_ string( (11);

5 e e New correctness
4 int b int of string(argv(4]):; "y

5 int ¢ int of string(argv(5]):; Condltlon

6 int u; int ¢t "

7 commute _ { ]
e o Infer or verify
9 a YR o o O BT T PR T R

10 { ((c >a) 2 21:1); }

ERET commute

12 0; 1g R

) conditions ...

TRY WEB DEMO! PULL THE DOCKER! READ THE PAPER!



Part B:

5 Symbolic Commutativity Reasoning TACAS'18, JAR'20, VMCAI'21

6 Inferring/verifying commute blocks Translation to logic




N
I
i

i, STEVENS Part B: Commutativity

Kv TTTTTTTTTT f TECHNOLOGY Reasoning

commute ( @ ) {

{ x = calcl(a);
C c + (xkx); }
{ if (c > 0 & y < 0)
c =c¢c - 1;
z = calc2(y);
else
z = calc3(y); }

}

What does it mean for commute condition @ to be correct?




N
S
i

TTTTTTTTTT f TECHN

OOOOO

%

Part B: Commutativity
Reasoning

commute

{ x

C

C
Z

else
Z

}

(@ ) {
calcl(a);

c + (xkx); }
{ if (c > 0 & y < 0)
c - 1;
calc2(y);

calc3(y); }

What does it mean for commute condition @ to be correct?

Block 1> Block 2

O —

0

Block 2>(;2 Block 1

’012\\

“-. Equivalent

. states when [[¢]lo

»CZZI d




)""k ' STEVENS Part B: Commutativity

@ TTTTTTTTTT f TECHNOLOGY Reasoning

commute ( @ ) {

{ x = calcl(a);
C c + (xkx); }
{ if (c > 0 & y < 0)
c =c¢c - 1;
z = calc2(y);
else
Z

calc3(y); }
+

What does it mean for commute condition @ to be correct?

Block 1 Block 2
9 012‘-

“; Equivalent
; states when [[@]lo

O—

Block 2 O Block 1 O R
> »Y21




)""k STEVENS Part B: Commutativity

@ TTTTTTTTTT ALY Reasoning
commute ( @ ) {
{ x = calcl(a);
C =cC + (xxx); }
{ if (c >0 & y < 0) ’'| Need symbolic
c=c¢c - 1; : reasoning
z = calc2(y);
else
z = calc3(y); }
s

What does it mean for commute condition @ to be correct?

Block 1 Block 2
9 012‘-

‘\. Equivalent
; states when [[@]lo

O—

Block 2 O Block 1 O R
> »Y21




Part B: Commutativity

Reasoning

Block 1 L. Block 2
>
01
A Just because
O— ! !
) ; . these are equal
Block 2 A Block 1
0~ ;
a Careful!
! Block 1 ' llock 2 i .
017 01y
' : Doesn’t mean these
o — : :
; ; are equal!

Block 2 (7: Block 1 (7:
> il |




STEVENS

i i g1
@ INSTITUTE of TECHNOLOGY

Part B: Commutativity

Reasoning

Block 1, _Block 2 .
0] 012

1
00— ' '
1 1

Blo

Decomposing Data Structure
Commutativity Proofs with
mn-Differencing

Eric Koskinen!®™ and Kshitij Bansal?

1 Stevens Institute of Technology, Hoboken, USA
eric.koskinen@stevens.edu
2 Google, Inc., Menlo Park, USA

Abstract. Commutativity of data structure methods is of ongoing inter-
est in contexts such as parallelizing compilers, transactional memory,

speculative execution and software scalability. D
lack effective theories and techniques to aid com
In this paper, we introduce a novel decompositi

Just because
; ; these are equal

Careful!
ean these



s STEVENS Part B: Commutativity
INSTITUTE of TECHNOLOGY Reasoning

Proof Rule for Decomposing Commutativity Reasoning

() + {sHsm]" @) | [sm(B){Is}
i1) ¢ {Reh A g} frh@ | (8 (Ra n )

~ || (i) : (Ra ANC) = I

. ©m 18 a commut. cond. for m(Z) > n(y)

. Decomposing Data Structure
a Commutativity Proofs with
. mn-Differencing Careful!

4 )

' Eric Koskinen!®™ and Kshitij Bansal?

N 1 Stevens Institute of Technology, Hoboken, USA
eric.koskinen@stevens.edu

, 2 Google, Inc., Menlo Park, USA ean these

Abstract. Commutativity of data structure methods is of ongoing inter-
B-LO est in contexts such as parallelizing compilers, transactional memory,

speculative execution and software scalability. D
lack effective theories and techniques to aid com
In this paper, we introduce a novel decompositi




STEVENS

INSTITUTE of TECHNOLOGY

Part B: Commutativity
Reasoning

ADT Impl.

insert ().
remove () {..
contains()..

J
J

Commute

Cond.
n

Pm

Verification of Semantic Commutativity Conditions
and Inverse Operations on Linked Data Structures

Deokhwan Kim

Martin C. Rinard

Massachusetts Institute of Technology
{dkim, rinard } @csail.mit.edu

Abstract

We present a new technique for verifying commutativity conditions,
which are logical formulas that characterize when operations com-
mute. Because our technique reasons with the abstract state of veri-
fied linked data structure implementations, it can verify commuting
operations that produce semantically equivalent (but not necessar-
ily identical) data structure states in different execution orders. We
have used this technique to verify sound and complete commuta-
tivity conditions for all pairs of operations on a collection of linked
data structure implementations, including data structures that ex-
port a set interface (ListSet and HashSet) as well as data structures
that export a map interface (AssociationList, HashTable, and Ar-
rayList). This effort involved the specification and verification of
765 commutativity conditions.

Many speculative parallel systems need to undo the effects of
speculatively executed operations. Inverse operations, which undo
these effects, are often more efficient than alternate approaches
(such as saving and restoring data structure state). We present a new
technique for verifying such inverse operations. We have specified
and verified, for all of our linked data structure implementations, an
inverse operation for every operation that changes the data structure
state.

Together, the commutativity conditions and inverse operations
provide a key resource that language designers, developers of pro-
gram analysis systems, and implementors of software systems can
draw on to build languages, program analyses, and systems with
strong correctness guarantees.

Categories and Subject Descriptors D.1.3 [Programming Tech-

nigues]: Concurrent Programming; D.2.4 [Software Engineering]:

¢ Deterministic Parallel Languages: Including support for
commuting operations in deterministic parallel languages in-
creases the expressive power of the language while preserving
guaranteed deterministic parallel execution [5, 42].

* Transaction Monitors: If a transaction monitor can detect
that operations within parallel transactions commute, it can use
efficient locking algorithms that allow commuting operations
from different transactions to interleave [17, 49]. Because such
locking algorithms place fewer constraints on the execution
order, they increase the amount of exploitable parallelism.

¢ Irregular Parallel Computations: Exploiting commuting op-
erations has been shown to be critical for obtaining good paral-
lel performance in irregular parallel computations that manip-
ulate linked data structures [28-30]. The reason is essentially
the same as for efficient transaction monitors — it enables the
use of efficient synchronization algorithms for atomic transac-
tions that execute multiple (potentially commuting) operations
on shared objects. For similar reasons, exploiting commuting
operations has also been shown to be essential for obtaining
good parallel performance for the SPEC benchmarks [7].

Despite the importance of commuting operations, there has been
relatively little research in automatically analyzing or verifying the
conditions under which operations commute. Indeed, the determin-
istic parallel language, transaction monitor, and irregular parallel
computation systems cited above all rely on the developer to iden-
tify commuting operations, with no way to determine whether the
operations do, in fact, commute or not. A mistake in identifying
commuting operations invalidates both the principles upon which
the systems operate and the correctness guarantees that they claim




" STEVENS

INSTITUTE of TECHNOLOGY

Part B: Commutativity
Reasoning

ADT Impl.

insert ().
remove () {..
contains()..

J
J

Commute

Cond.

Deokhwan Kim Martin C. Rinard

Massachusetts Institute of Technology
{dkim,rinard } @csail.mit.edu

Verification of Semantic Commutativity Conditions
and Inverse Operations on Linked Data Structures

Jahob Verification System

Jahob is a verification system for programs written in a subset of Java. Using J
methods satisfy their contracts in all possible executions, as well as that they p
design constraints.

Jahob is now on github: https://github.com/epfl-lara/jahob

Note

« Information below may be outdated
« Java may be outdated. Consider Scala, http://www.scala-lang.org/
« To verify Scala, consider tools such as http://leon.epfl.ch and its successo

Some of the data structures verified in Jahob

You may wish to compare

» ArrayList class JavaDoc to

ions in deterministic parallel languages in-
ive power of the language while preserving
inistic parallel execution [5, 42].

Eallel Languages: Including support for

in parallel transactions commute, it can use
lgorithms that allow commuting operations
sactions to interleave [17, 49]. Because such
s place fewer constraints on the execution
e the amount of exploitable parallelism.

Thitors: If a transaction monitor can detect

Computations: Exploiting commuting op-
hown to be critical for obtaining good paral-
irregular parallel computations that manip-
tructures [28-30]. The reason is essentially
icient transaction monitors — it enables the
chronization algorithms for atomic transac-
multiple (potentially commuting) operations
For similar reasons, exploiting commuting
o been shown to be essential for obtaining
rmance for the SPEC benchmarks [7].

nce of commuting operations, there has been
h in automatically analyzing or verifying the
h operations commute. Indeed, the determin-
b, transaction monitor, and irregular parallel
cited above all rely on the developer to iden-
tions, with no way to determine whether the
. commute or not. A mistake in identifying
invalidates both the principles upon which
d the correctness guarantees that they claim




" STEVENS

INSTITUTE of TECHNOLOGY

Part B: Commutativity
Reasoning

ADT Impl.

ADT Spec.

Commute

insert ( ) { lDins,Qins
remove( ) {..
(

contains()..

J
J

P rems Orem
P cons Qcon

Cond.

<+» 'l
P

Deokhwan Kim Martin C. Rinard

Massachusetts Institute of Technology
{dkim,rinard } @csail.mit.edu

Verification of Semantic Commutativity Conditions
and Inverse Operations on Linked Data Structures

Jahob Verification System

Jahob is a verification system for programs written in a subset of Java. Using J
methods satisfy their contracts in all possible executions, as well as that they p
design constraints.

Jahob is now on github: https:/github.com/epfl-lara/jahob

Note

« Information below may be outdated
« Java may be outdated. Consider Scala, http://www.scala-lang.org/
« To verify Scala, consider tools such as http://leon.epfl.ch and its successo

Some of the data structures verified in Jahob

You may wish to compare

» ArrayList class JavaDoc to

ions in deterministic parallel languages in-
sive power of the language while preserving
inistic parallel execution [5, 42].

[rallel Languages: Including support for

in parallel transactions commute, it can use

gorithms that allow commuting operations
sactions to interleave [17, 49]. Because such
s place fewer constraints on the execution
e the amount of exploitable parallelism.

itors: If a transaction monitor can detect
Tr

Computations: Exploiting commuting op-
hown to be critical for obtaining good paral-
irregular parallel computations that manip-
tructures [28-30]. The reason is essentially
icient transaction monitors — it enables the
chronization algorithms for atomic transac-
multiple (potentially commuting) operations
For similar reasons, exploiting commuting
o been shown to be essential for obtaining
rmance for the SPEC benchmarks [7].

nce of commuting operations, there has been
h in automatically analyzing or verifying the
h operations commute. Indeed, the determin-
b, transaction monitor, and irregular parallel
cited above all rely on the developer to iden-
tions, with no way to determine whether the
. commute or not. A mistake in identifying
invalidates both the principles upon which
d the correctness guarantees that they claim




fiiml STEVENS

INSTITUTE of TECHNOLOGY

Part B: Commutativity
Reasoning

ADT Spec.

lDins 5 Qins

|2 rems Orem
P CON> Qcon

Commute
/ .
Servois Cond.

—1 Synthesis an
, m
\TACAS 18

Precise and Useful Commutativity Conditions

Kshitij Bansal'*, Eric Koskinen?!, and Omer Tripp'*

Automatic Generation of

Acum. Counter

Set

tchnology

" between data-structure op-
ations including parallelizing
re recently, Ethereum smart
on automatic generation of
vare of any fully automated
pth sound and effective.
. by an algorithm that iter-
h of the commutativity (and
methods into an increasingly
/when the entire state space
t any time to obtain a par-
e have generalized our work
e completeness. We describe

| commutativity conditions,
g refinement and heuristics
on.

Lotype open-source tool SER-

| m(z) | | n(y) |[Simple] Poke | on' (Poke)
Qs (time) Qs (time)
decrement < decrement| 3 (0.1)| 3 (0.1)|true
increment > decrement| 10 (0.3)| 34 (0.9)|-(0=¢)
decrement > increment| 3 (0.1)| 3 (0.1)|true
decrement < reset 2 (0.1)| 2(0.1)|false
decrement < zero 6 (0.1)| 26 (0.6)|~(1=r¢)
increment < increment| 3 (0.1)| 3 (0.1)|true
increment < reset 2 (0.0) 2 (0.1) |false
increment < zero 10 (0.3)| 34 (0.8)|~(0=¢)
reset < reset 3 (0.1)] 3 (0.1)|true
reset < zero 9 (0.2)] 30 (0.6)[0=c¢c
zero < zero 3 (0.1)|] 3 (0.1)|true
increase < increase | 3 (0.1) 3 (0.1) true
increase < read 13 (0.3)| 28 (0.6)|c+z1=c¢c
read i< read 3 (0.0)] 3 (0.0)|true
add b< add 10 (0.4)| 140 (4.4)|(y1 =21 Ay1 € Q) V —(y1 = 1)
add < contains |10 (0.4)| 122 (3.6)|z1 € SV (—(z1 € S) A =(y1 = 1))
add < getsize 6 (0.2) 31(09)|z1 €S
add b remove 6 (0.2)| 66 (2.2)|~(y1 = z1)
contains < contains | 3 (0.1)| 3 (0.1)|true
contains < getsize 3 (0.1) 3 (0.1) true
rantasne B ramotre 17 /05 10 (A RIS\ Tl — Joas WV \/(  Aare  Tor. W) \/

b queries that are dispatched
bvoIS through two case stud-
pbns for a range of data struc-

TACAS 2018




fiiml STEVENS

INSTITUTE of TECHNOLOGY

Part B: Commutativity

Reasoning

ADT Spec.

commute ? { IDins,Qins
{Sl} {52} ___| Translate(co _>Prem90rem

mmute,s,,s,)

} P Cons Ocon

Veracity: Declarative Multicore Programming with
Commutativity

ADAM CHEN, Stevens Institute of Technology, USA

PARISA FATHOLOLUMI, Stevens Institute of Technology, USA
ERIC KOSKINEN, Stevens Institute of Technology, USA
JARED PINCUS, Stevens Institute of Technology, USA

There is an ongoing effort to provide programming abstractions that ease the burden of exploiting multicore
hardware. Many programming abstractions (e.g., concurrent objects, transactional memory, etc.) simplify
matters, but still involve intricate engineering. We argue that some difficulty of multicore programming can be
meliorated through a declarative programming style in which programmers directly express the independence
of fragments of sequential programs.

In our proposed paradigm, programmers write programs in a familiar, sequential manner, with the added
ability to explicitly express the conditions under which code fragments sequentially commute. Putting such
commutativity conditions into source code offers a new entry point for a compiler to exploit the known
connection between commutativity and parallelism. We give a semantics for the programmer’s sequential
perspective and, under a correctness condition, find that a compiler-transformed parallel execution is equivalent
to the sequential semantics. Serializability/linearizability are not the right fit for this condition, so we introduce
scoped serializability and show how it can be enforced with lock synthesis techniques.

We next describe a technique for automatically verifying and synthesizing commute conditions via a new
reduction from our commute blocks to logical specifications, upon which symbolic commutativity reasoning
can be performed. We implemented our work in a new language called Veracity, implemented in Multicore
OCaml. We show that commutativity conditions can be automatically generated across a variety of new
benchmark programs, confirm the expectation that concurrency speedups can be seen as the computation
increases, and apply our work to a small in-memory filesystem and an adaptation of a crowdfund blockchain
smarl contract.

1 INTRODUCTION

Writing concurrent programs is difficult. Researchers and practitioners, seeking to make life easier,

'Y 4 ‘ .1 = 'Y s ' a . P 'y v SR |

/ .
Servois

(TACAS'18,

Commute

Cond.

—1 Synthesis > gp}’;fl



Part B: Commutativity
Reasoning

i iy STEVENS commute ? { Translate(co ])in590ins
@ INSTITUTE of TECHNOLOGY {51} {52} mmute,sl,s2 Prm’orm

@,

Servois | }
™ Synthesis ™
TACAS’18 )

TACAS’18/JAR’20



STEVENS commute ? { || Translate(co ])ins,Qins

Servois
INSTITUTE of TECHNOLOGY {Sl} {52} mmute,s,,s,) P 0
T rm

™ Synthesis
(TACAS™18) J

Part B: Commutativity
Reasoning

gﬂn

R ogical ADT Specification —
state :  (Var, Type)list; methods : Meth list;
eq C state X state; spec Meth — (P, Q)

S
I

Automatic Generation of

Precise and Useful Commutativity Conditions . I I I I I I I I I I I I I I

o I

' Google, Inc. (é = & i i 3)

% Stevens Institute of Technology “. ‘. ‘. ﬂ
| \J | J

Kshitij Bansal'*, Eric Koskinen?!, and Omer Tripp'*

Abstract. Reasoning about commutativity between data-structure op-
erations is an important problem with applications including parallelizing
compilers, optimistic parallelization and, more recently, Ethereum smart
contracts. There have been research results on automatic generation of
commutativity conditions, yet we are unaware of any fully automated
technique to generate conditions that are both sound and effective.

We have designed such a technique, driven by an algorithm that iter-
atively refines a conservative approximation of the commutativity (and
non-commutativity) condition for a pair of methods into an increasingly
precise version. The algorithm terminates if/when the entire state space
has been considered, and can be aborted at any time to obtain a par-
tial yet sound commutativity condition. We have generalized our work
to left-/right-movers [27] and proved relative completeness. We describe
aspects of our technique that lead to useful commutativity conditions,
including how predicates are selected during refinement and heuristics
that impact the output shape of the condition.

We have implemented our technique in a prototype open-source tool SER-
vois. Our algorithm produces quantifier-free queries that are dispatched
to a back-end SMT solver. We evaluate SERvVOIS through two case stud-
ies: (i) We synthesize commutativity conditions for a range of data struc-
tures including Set, HashTable n n
We consider an Ethereum smj

that SERVOIS can detect serioul TACAS 201 8, JAR 2020 m’ m

guide developers to construct rd




‘:}}h STEVENS commute ? { || Translate(co [)ins,Qins ' SSe;‘;lloiSi ‘ n Part B: CommUtatiVity
kv TTTTTTTTTT FTECHNOLOGY {s1} {s2} _mmute,sl,sz):|-> PI‘IIbOI’Hl “ (pm Reasoning
ogical ADT Specification
state ar, e)list; methods : eth list;
O = tat Var, Type)list thod Meth list
- eq C state X state; spec :  Meth — (P,Q)

1. Verifying commute condition ¢, (o, X, y) for methods
m(x)/r,, n(y)/r,
4 i 1)

” -

valid | @' (0,%,y) = m®Ir, X oG/, |
~ : o




‘:}}h STEVENS commute ? { || Translate(co [)ins,Qins ' SSe;‘;lloiSi ‘ n Part B: CommUtatiVity
ogical ADT Specification
state ar, e)list; methods : eth list;
O = tat Var, Type)list thod Meth list
- eq C state X state; spec :  Meth — (P,Q)

1. Verifying commute condition ¢, (o, X, y) for methods
m(x)/r,, n(y)/r,
4 i 1)

” -

valid | @' (0,%,y) = m®Ir, X oG/, |
\_ ) =
V00,01,02,%,Y, T'm, Tn-




‘:ﬁh STEVENS commute ? { || Translate(co [)ins,Qins ' SSe;‘;lloiSi ‘ n Part B: COmmUtatiVity
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec :  Meth — (P,Q)

1. Verifying commute condition ¢, (o, X, y) for methods
m(x)/r,, n(y)/r,

d r N
valid | @' (0,%,y) = m®Ir, X oG/, |
~ : o
V00,01,02, %, Y, T'm, Tn-
m(x)/Tm n(y)/rn

g0 > 01 > 09 —>




commute ? {__Translate(co [)insaoins ' Ssgisis n Part B.' COmmUtatiVity
{s1} {s2} _mmute,sl,SZ) PerOI.m ’ Pm Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y) for methods
m(x)/r,, n(y)/r,

d : D
valid | @' (0,%,y) = m®Ir, X oG/, |
N : Y
\V/O'(),O'l,O'Q,ZC,y,’I“m,Tn.
- m(rfe)/?“m> - n(y)/?“n> SN

(30_3.0_0 n(y)/rn\ m(x)/rm 2)) /\

/0-3 >




commute ? {__Translate(co [)insaoins ' SSZ:S n Part B.' COmmUtatiVity
Us1) {52) IR LPrn,Orm P Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y) for methods
m(x)/r,, n(y)/r,

@ r N
valid | @(0,X,y) = m®/r, X a()Ir, |
~ : 2
V00,01,02, %, Y, T'm, Tn-
- m(96)/"“m> - n(y)/?“n> SN

(30_3.0_0 n(y)/rn\ m(x)/rm 2)) /\

/0-3 >




commute ? {__Translate(co [)insaoins ' Ssgisis n Part B.' COmmUtatiVity
{s1} {s2} _mmute,sl,SZ) PerOI.m ’ Pm Reasoning
ogical ADT Specification
O = state (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y) for methods

m(x)/r,, n(y)/r,

d : D
valid | @' (0,%,y) = m®Ir, X oG/, |
N : Y
\V/O'(),O'l,O'Q,ZC,y,’I“m,Tn.
- m(rfe)/?“m> - n(y)/?“n> SN

(30'3.0'() n(y)/rn\ m(:c)/rm> 0'2)) AN

/0-3

Avoid introducing quantifiers in
encoding of commutativity




commute ? {__Translate(co [)insaoins ' Ssgisis n Part B.' COmmUtatiVity
{s1} {s2} _mmute,sl,SZ) PerOI.m ’ Pm Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition (pl?,l(d, X, y)

2. Synthesize commute condition

Use a form of abstraction-refinement.
Start with candidate commutativity condition H

4 )

valid {H = m@/r, X n(&)/rn}
\_ J




;‘:?“. STEVENS commute ? { || Translate(co ])ins,Qins ' SSer;lloiSi n Part B: CommUtatiVity
soroios {s1} {s2} _"""“te’sl’52>| > PO [ racasia)) " Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

1. Veritying commute condition (pm(G a}_’)

2. Synthesize commute condition via abstraction-refinement

Doesn’t REﬁﬂE( H)

Commute




;‘:?“. STEVENS commute ? { || Translate(co ])ins,Qins ' SSer;lloiSi n Part B: CommUtatiVity
soroios {s1} {s2} _"""“te’sl’52>| > PO [ racasia)) " Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

1. Veritying commute condition (pm(G a}_’)

2. Synthesize commute condition via abstraction-refinement

Doesn’t REﬁﬂE( H)

Commute




;‘:?“. STEVENS commute ? { || Translate(co ])ins,Qins ' SSer;lloiSi n Part B: CommUtatiVity
soroios {s1} {s2} _"""“te’sl’52>| > PO [ racasia)) " Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

1. Veritying commute condition (pm(G a}_’)

2. Synthesize commute condition via abstraction-refinement

Doesn’t REﬁﬂE( H)

Commute




?' STEVENS commute ? { | Translate(co Pins,Qins SﬁrVOL"; . Part B: Commutativity
G (1) (=20 [ | P QO | \ }S’XCTS?;Z az Reasoning
ogJQaLAMpemfication
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P,Q)

1. Verifying commute condition qom((f a)_’)

2. Synthesize commute condition via abstraction-refinement

Doesn’t REﬁﬂE( H)

Commute




commute ? { | Translate(co PII]S Qms ' S?I’IZE n Part B,' CommUtatiVity
{s1} {s2} | |WIHEesL%: PransQrmn [\ TACAS'18) = O Reasoning
ogJQaLAMpemfication
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y)

2. Synthesize commute condition via abstraction-refinement

Doesn’t Reﬁne( H)
Commute

WV If valid( H = mXin ): add H to ¢




commute ? { __Translate(co ])ins,Qins ' SS':ZE n Part B,' CommUtatiVity
{s1} {s2} _mmute,sl,sz) Prn,Qemn ’ Pm Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y)

2. Synthesize commute condition via abstraction-refinement

Doesn’t Reﬁne( H)
Commute

WV If valid( H = mXin ): add H to ¢




commute ? {__Translate(co ])ins,Qins ; SSZ: }, n Part B: CommUtatiVity
151} {s2} _"‘"‘“te’sl’sz) Prn,Qrm | P Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y)

2. Synthesize commute condition via abstraction-refinement

Doesn’t Reﬁne( H)
Commute

W Y Ifvalidl H= mNXn): add H to ¢

v If valid( H = mi#n ): add H to ¢




commute ? {__Translate(co ])ins,Qins ‘ SSZES n Part B: CommUtatiVity
151} {s2} _"‘"‘“te’sl’sz) Prn,Qrm | P Reasoning
ogical ADT Specification
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y)

2. Synthesize commute condition via abstraction-refinement

Doesn’t Reﬁne( H)
Commute

W Y Ifvalidl H= mNXn): add H to ¢

v If valid( H = mi#n ): add H to ¢




commute ? { _Translate co ])insaoins ‘ Sflgis‘?;  , n P al‘t B.' CommUtatiVity
{s1} {s2} _“‘""‘te’sl’SZ’ P Qe |- O Reasoning
ogical ADT Specification
O = state : (Var,Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P,0Q)

1. Verifying commute condition ¢, (o, X, y)

2. Synthesize commute condition via abstraction-refinement

Doesn’t Reﬁne( H)
Commute

WV If valid( H = mXin ): add H to ¢

v If valid( H = mi#n ): add H to ¢




commute ? { | Translate(co PII]S Qms ' SS’:ZE n Part B,' CommUtatiVity
1s1} {s2} nnute,sy,sz) Prm Qrm ‘ TP):CAS’18 | ‘ COm Reasoning
ogJQaLAMpemfication
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y)

2. Synthesize commute condition via abstraction-refinement

Doesn’t Reﬁne( H)
Commute

WV If valid( H = mXin ): add H to ¢

v If valid( H = mi#n ): add H to ¢

v If neither:
P=CHOOSE(...)
Refine(H /\ P); Refine(H /\ —P)




commute ? { | Translate(co PII]S Qms ' S?I’IZE n Part B,' CommUtatiVity
{s1} {s2} | |WIHEesL%: PransQrmn [\ TACAS'18) = Reasoning
ogJQaLAMpemfication
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec . Meth — (P, Q)

1. Verifying commute condition ¢, (o, X, y)

2. Synthesize commute condition via abstraction-refinement

Doesn’t Reﬁne( H)
Commute

WV If valid( H = mXin ): add H to ¢

v If valid( H = mi#n ): add H to ¢
Use counterex’s

v Ifneither: “poke’?r?:uristic.
P=CHOOSE(. AO/ Generate preds, etc.
Refine(H /\ P); Refine(H \ —P)




'{i:?“i STEVENS commute ? { || Translate(co [)ins,Qins ' SSe;‘;lloiSi ‘ n Part B: CommUtatiVity
STEVENS  |eqmee.), }' PO | e 1T 01 Reasoning
ogical ADT Specification

O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec :  Meth — (P,Q)

1. Verifying commute condition CUIZL(G’ X, y)

2. Synthesize commute condition

1 REFINE™(H,P) {

2 if valid(H = m < n) then
3 w=pV H;
4 else if valid(H = m X n) then
5 Y =0V H,;
6 else

7 let xc, xnc = counterex. to > and i (resp.) in
8 let p = CHOOSE(H, P, Xx¢, Xnc) IN

9 REFINET(H A p, P\ {p});

10 REFINE]"(H A —p, P\ {p});

1}

12 main {

13 ¢ .= false; ¢ :=false;

14 try { REFINE " (true, P); }

15 catch (InterruptedException e) { skip; }

16 return(y, ©);

17}




Part B: Commutativity
Reasoning

commute ? { Translate(co [)iIlSaOiIlS

{s1} {s2} [ |™utess) [ |p 0.

Servois )
™ Synthesis [
TACAS’18

Set Abstract Data Type
S

contains (x) /bool, which performs a side-effect-
free check whether the element z 1s in S; and

add (y) /bool, which adds y to S if it is not already in
there and returns true, or otherwise returns false.



'~ STEVENS

INSTITUTE of TECHNOLOGY

commute ? {

{s1} {s2}

Translate(co
mmute,s,,s,

s

[)ins > Qins
P T 9 Qrm

Servois | |
™ Synthesis [
(TACAS’18 )

Don’t Know

¢n

Part B: Commutativity
Reasoning




'~ STEVENS

INSTITUTE of TECHNOLOGY

commute ? { Translate(co
{s1} {s2} mmute,s,,s,

s

[)ins > Qins
P T 9 QI'IH

Servois | |
™ Synthesis [
(TACAS'18 ) }

H = true

¢n

Part B: Commutativity
Reasoning




Servois

llii :n STE \/ ENS commute ? { Translate(co PiflSaQiIlS ;‘ | ’
ECHNOLOGY t ’ ’ 1
THE INNOVATION UNIVERSITY {51} {52} mmu e 51 52) Prm,Qrm ’

™ Synthesis
TACAS'18 )

Part B: Commutativity
Reasoning

true =>
contains(x)/bool

X

add(y)/bool?

H = true




Part B: Commutativity

g071
" Reasoning

iiit:iii STEVENS commute ? { Translate(co PiIISaQiHS
@ TTTTTTTTTT f TECHNOLOGY { 51} {52} mmute,sl,sz) Prm,Qrm

;} Servois | §
= Synthesis [}
TACAS’18 .
true =>

contains(x)/bool

X

add(y)/bool?

H = true

Counterexample (X)



Part B: Commutativity

g07’1
" Reasoning

I . : érois
aff:. ? P b ; 1
@ {s1} {s2} S35 Prn,Qemn | \ | TACAS 8

true =>

contains(x)/bool

X

add(y)/bool?

H = true

true =>
contains(x)/boo'l

K

| add(y)/bool?
Counterexample (X)

A




Translate(co
mmute,s,,s,)

STEVENS

TTTTTTTTTT f TECHNOLOGY

commute ? {
{s1} {s2}

Counterexample (}4)
|

'

H = true

‘*
|

Counterexample (X)

ervois

y —— a
/ .
8 |
1 f
th 1
it
[
1
|

])ins 5 Qins
P rms Orm

ynthesis [}

\T7ACAS18)

Part B: Commutativity

g07’1
" Reasoning

contains(x)/bool

X

add(y)/bool?

true =>
contains(x)/boo'l

K

add(y)/bool?




Part B: Commutativity
Reasoning

I . : érois
. ? {7 Pins,Cins | 4
@ SRy — PO | \ (7ACAS'18

@,

Counterexample (4) true =>
| contains(x)/bool

: X

add(y)/bool?

H =true A p

H=true A =p

true =>
contains(x)/boo'l

K

| add(y)/bool?
Counterexample (X)

A




Part B: Commutativity
Reasoning

A
nh ﬂ'“i STEVENS commute ? { Translate(co ])ins,Qins
INSTITUTE of TECHNOLOGY {51} {52} mmute,s,,s,) PerOI,m

Servois ]
™ Synthesis [
(TACAS’18 )

p: (x =y)

H = true A (X=)') H = true A

7(x=Y)




Part B: Commutativity
Reasoning

Servois | |
™ Synthesis ™
(TACAS’18 ) §

Y
Eii,-:i“ STEVENS commute ? { Translate(co ])in&oins
@ INSTITUTE of TECHNOLOGY {Sl} {52} mmute,sl,sz) Prm’orm

p: (x =y)

H = true A (x=Y) H = true A

7(x=Y)




Part B: Commutativity
Reasoning

Servois | |
™ Synthesis ™
(TACAS'18 )|

M‘k
Ml wil i STEVENS commute ? { Translate(co lDins,Qins
@ INSTITUTE of TECHNOLOGY {Sl} {52} mmute,sl,sz) Prm’Qrm

p: (x =y)

H = true A (x=Y)

H = true A
(x=y)




Part B: Commutativity
Reasoning

%5 STEVEN ' comnute ? { \ rrensao(co_{_gy| /1o Qhns LLE SOPOC 1
. INSTITUTE 0 f TECHNOLOGY {s1} {s2} mmute,s,,s,) P 0 ; |
THE INNOVATION UNIVERSITY® Tmo rm \ TACAS,18

contains(x)/bool

X

add(y)/bool?

H = true A (x=Y)

H = true A
7(X=y)

Yes!




La STEVENS

commute ? { Translate(co
{51} {52} mmute,s,,s,)

H

true A (X

Y)

H = true A
7(X=y)

Pins 5 Qins
P rms Orm

SSZE lo . Part B: Commutativity
J o Om Reasoning
H: (x = y)
H=>
contains(x)/bool
add(y)/bool?
H =>
contains(x)/bool

K

add(y)/bool?




STEVENS commute ? { Translate(co
TTTTTTTTTT f TECHNOLOGY {s1} {s2} mmute,s,,s,)

H = true A (x=Y)

Counterexample (X)

H = true A
7(X=y)

])ins 5 Qins
P rms Orm

; Servois | }
™ Synthesis ™}
TACAS'18)

Part B: Commutativity

ggl’l
" Reasoning

H: (x = y)

H=>
contains(x)/bool

X

add(y)/bool?

H=>
contains(x)/bool

K

add(y)/bool?




Part B: Commutativity
Reasoning

iiit:iii STEVENS commute ? { Translate(co ])in590ins
@ TTTTTTTTTT f TECHNOLOGY { 51} {52} mmute,sl,sz) Prm,Orm

; f groig i
Counterexample ()4)

l H: (x = y)

H=>
contains(x)/bool

X

H= add(y)/bool?

H = true A
7(X=y)

H=>
contains(x)/bool

K

| add (y) /bool?
Counterexample (X)




Servois | |
= Synthesis
TACAS'18)

commute ? { Translate(co PiIlSaQiHS n Part B.' CommUtatiVity
{s1} {s2} mmute,s,,s,) Prm,Qrm @D,

Reasoning

H = true A
(x=y) A (X € )

b’ (x € 5)

H = true A
7(X=y)

H = true A
(x=y) A (x €3)




Part B: Commutativity
Reasoning

o 5 Ps. O; Servois | }
fis) STEVENS commute ? { L_{Tgoddelco. inssCins (| Symnese
@ INSTITUTE of TECHNOLOGY {sl} {52} 0= lp =2 Prm,Ofm TACAS,18

%

H = true A

(X=y) A (x €59)

~ H = true A

@ )

H = true A
(x=y) A (x € 5S)




Part B: Commutativity
Reasoning

iii|:“:gi STEVENS commute ? { Translate(co Pil'lSaQiIlS

il n
@ TTTTTTTTTT f TECHNOLOGY {s1} {s2} Lo Prm,OI'm qgm

Servois | |
™ Synthesis ™}
TACAS'18)

H=true/\¢

(X=y) A (x €59)

~ H = true A

@ )

H = true A
(x=y) A (x € 5S)




b iy STEVENS commute ? { Translate(co ])ins,Qins . S?Ii':;l/gisﬁs (pn Part B: CommUtatiVity
@ e moR v e LsLy (s2]) I—— Prn,Qrm Tacas'1s)f) Reasoning
m(x) n(y) Simple Poke ™ (Poke)
Qs (time) Qs (time)
decrement [<I decrement 3 (0.1) 3 (0.1) | true
increment [> decrement 10 (0.3) 34 (0.9) | =(0=rc)
decrement [>  increment 3 (0.1) 3(0.1) | true
. | decrement DI reset 2 (0.1) 2 (0.1) | false
9 | decrement X zero 6 (0.1) 26 (0.6) | =(1 =rc¢)
§ increment [<I  increment 3 (0.1) 3 (0.1) | true
Q | increment [XI reset 2 (0.0) 2 (0.1) | false
© | increment 1 zero 10 (0.3) 34 (0.8) | =(0=c)
reset D reset 3 (0.1) 3 (0.1) | true
reset DI zero 9 (0.2) 30 (0.6) | 0=c
zero DX zero 3 (0.1) 3 (0.1) | true
< increase [ increase 3 (0.1) 3(0.1) | true
2 increase [ read 13 (0.3) 28 (0.6) | c+x1 =c
< read [XI read 3 (0.0) 3 (0.0) | true
add < add 10 (0.4) 140 (4.4) | (y1 =21 Ay1 € S)V (y1 = x1)
add I contains 10 (0.4) 122 (3.6) | z1 € SV (~(x1 € S) A= (y1 = x1))
add X1 getsize 6 (0.2) 31 (09) | z1 € S
add X1 remove 6 (0.2) 66 (2.2) | —(y1 = x1)
© contains I contains 3 (0.1) 3(0.1) | true
7 contains < getsize 3 (0.1) 3(0.1) | true
contains [DXI remove 17 (0.5) 160 (4.8) | S\ {z1} ={y1}V(... Ay1 € {x1})V
getsize getsize 3 (0.1) 3(0.1) | true
cetaize remove 12 (O R) 27 (1 0O) — (2111 & 9)




Servois

:;‘iiﬁi“ STEVENS commute ? { Translate(co Pins,Qins ‘ S ?; . Part B: CommUtatiVity
gy =it {s1} {s2} [ |mweessd | TP O [ rAcass) ) 7™ Reasoning

m(x) n(y) Simple Poke " (Poke)

Qs (time) Qs (time)
decrement [<I decrement 3 (0.1) 3 (0.1) | true
PUURNRONS BN 1 Yo 111175 o PORUORI I-SURY o [ =Yoo =1 1T=1 41 S0 NP N 00 0 . 8 R Doy, S 155 0 W0 N1 4 =3 v uaupmm
get X get 3 (0.1) 3(0.1) | true
get <X haskey 3 (0.1) 3(0.1) | true
| put >  get 13 (0.4) 74 (2.3) | (Hlz1 + x2] = H Ay1 € keys)
: V(m(H[z1 = 2] = H) AN ~(y1 = 1)) §
! get > put 10 (0.3) 48 (1.5) | [Hly1] = w2 V [=(H[y1] = y2) A | §
4 —~(y1 = 1)
y O remove [> get 3 (0.1) 3(0.1) | true
, o get > remove 13 (0.4) 40 (1.2) | —(y1 = x1)
{ E get DI size 3 (0.1) 3 (0.1) | true
i 2 haskey X haskey 3 (0.1) 3 (0.1) | true
§ T haskey DI  put 10 (0.3) 52 (1.6) | [y1 € keys]V[—(y1 € keys)A—(y1 =
| z1)]
1 haskey [XI remove 17 (0.5) 44 (1.3) | [x1 € keys A =(y1 = z1)] V [~(x1 €
: keys)]
haskey X size 3 (0.1) 3 (0.1) | true
put DI put 24 (0.9) | 357 (13.5) | ...V (=(H[y1] = y2) A ~(y1 = x1))
.; put <X remove 6 (0.3) 33 (1.2) | —(y1 = x1)
i put X size 6 (0.2) 23 (0.8) | =1 € keys
PASTDIe o =11 (TS RVASTNEPR B-S e o1 1A T @ RV S = NP 95‘ - , 'n: e S — "
getsize D getsize 3 (0.1) 3(0.1) | true
coeteize M1 remove 12 (O R) 27 (1 0O) — (2111 & 9)




%\J
_ain

ilung STEVENS commute ? { Translate(co 101115901115
Kv INSTITUTE of TECHNOLOGY {Sl} {52} mmUte’sl’SZ) PI‘II]gQI’Hl

Part B: Commutativity

(pn
" Reasoning

Servois | }
™ Synthesis [
(TACAS’18 )

Applications of Commutativity Synthesis

e Smart Contracts. Ensure determinism.

e Concurrent verification. Partial Order reduction,
transactional memory, etc.

e Testing for interactions between code blocks.
e CRDTs. Distributed computing.
 Refactoring (and other relational reasoning).

e Code synthesis. Eg, synthesized conditions become
specification for synchronization synthesis.

e Commute blocks in Veracity!



' STEVENS

INSTITUTE of TECHNOLOGY

commute ? { Translate(co ])insaoins ;‘ S?ﬁ[;gzs i gOn
mmute,s,,s,) ‘:‘
151} 1s2} - Prn,Qrm TACAS'18) "

Part B: Commutativity
Reasoning

SERVOIS

Available on GitHub.

y gt 7'
R

ﬂshitij Bansal Omer Tripp\
PhD student at NYU  PhD student at TAU

Now at Google Now at Amazon

Implemented in Python with CVC4.



=

o
it ||

i STEVENS commute ? { Translate(co EHS,QiﬂS
Kv INSTITUTE of TECHNOLOGY {Sl} {52} mmUte’sl’SZ) PI‘II]gQI’Hl

Part B: Commutativity
Reasoning

Servois )
™ Synthesis [
TACAS’18

SERVOIS 2.0

Coming very soon!

e More solvers! cvc4, CvCs, 73, ...

e More theories! e.g bitvectors.

e Faster! Reimplemented in OCaml from scratch.
 Better predicate generation.
 Better predicate selection.

e Command-line or Library API.



| commute ? {

\ tslt {s2}

STEVENS

@ INSTITUTE of TECHNOLOGY

[)ins 5 Qins
P T 9 Qrm

Servois
Synthesis
TACAS’18

Pm

. Part B: Commutativity

Reasoning

commute ? {

ADT Spec.

])ins 5 Qins

{ S 1} { S } ___| Translate(co L Prem,Orem

/ .
Servois

Commute

Cond.

— o —> n
nnute,s,,s,) Synthesis P,

} P Cons Qcon

(TACAS'18,

Veracity: Declarative Multicore Programming with i

Commutativity

ADAM CHEN, Stevens Institute of Technology, USA

PARISA FATHOLOLUMI, Stevens Institute of Technology, USA
ERIC KOSKINEN, Stevens Institute of Technology, USA
JARED PINCUS, Stevens Institute of Technology, USA

There is an ongoing effort to provide programming abstractions that ease the burden of exploiting multicore
hardware. Many programming abstractions (e.g., concurrent objects, transactional memory, etc.) simplify
matters, but still involve intricate engineering. We argue that some difficulty of multicore programming can be
meliorated through a declarative programming style in which programmers directly express the independence
of fragments of sequential programs.

In our proposed paradigm, programmers write programs in a familiar, sequential manner, with the added
ability to explicitly express the conditions under which code fragments sequentially commute. Putting such
commutativity conditions into source code offers a new entry point for a compiler to exploit the known
connection between commutativity and parallelism. We give a semantics for the programmer’s sequential
perspective and, under a correctness condition, find that a compiler-transformed parallel execution is equivalent
to the sequential semantics. Serializability/linearizability are not the right fit for this condition, so we introduce
scoped serializability and show how it can be enforced with lock synthesis techniques.

We next describe a technique for automatically verifying and synthesizing commute conditions via a new
reduction from our commute blocks to logical specifications, upon which symbolic commutativity reasoning
can be performed. We implemented our work in a new language called Veracity, implemented in Multicore
OCaml. We show that commutativity conditions can be automatically generated across a variety of new
benchmark programs, confirm the expectation that concurrency speedups can be seen as the computation
increases, and apply our work to a small in-memory filesystem and an adaptation of a crowdfund blockchain
smarl contract.

1 INTRODUCTION

Writing concurrent programs is difficult. Researchers and practitioners, seeking to make life easier,

v 4 v .1 v 'y . a . - | & & 3 TEE |




comnute ? {A | Pins,Qins S?ﬁtrxgzs o Part B: Commutativity
{s1y {s2y | "5 1 PO | (Jacas'te " Reasoning
R ogical ADT Specification —
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

calcl(a):
= C + (x*x):

@)

if (c >0 && y < 0) {

c=c¢c-1;
m z = calc2(y);
2 } else {

z = calc3(y);

}




e 7 4 | Pins,Qins S?/ﬁ:;\/g:s o Part B: Commutativity
{s1y {s2y | "5 1 PO | (Jacas'te " Reasoning
R ogical ADT Specification —
O = state :  (Var, Type)list; methods : Meth list;
B eq C state X state; spec . Meth — (P, Q)

calcl(a);

L— But miis code, not a
= C + (x*x):

logical spec.

@)

if (c >0 && y < 0) {

c =cCc - 1;
m z = calc2(y);
21} else {

z = calc3(y);

}




(| commute 7 4 Pins,Qins ool _ Part B: Commutativity
e I s’ M VN T S iz Reasoning
B ogical ADT Specification —
O = state :  (Var, Type)list; methods : Meth list;
- eq C state X state; spec . Meth — (P, Q)

calcl(a);

L= But m,is code, not a
c + (xxx);

logical spec.

(@)
[l

if (c >0 && y < 0) {

c=c¢c-1;
m z = calc2(y);
2° 11 else {
z = calc3(y); (or (an
1 (let ((x_1 a)

(let ((c_1 (+ c (x x 1 x_.1))))

(and (= c_new c_1) (= x_new x_1))))
(= a_new a) (= z_new z) (= y_new vy)
(= size new size))))




~
=
i

Pins,Qins | [ Servois Part B: Commutativity

commute ? {

; Svyn [
o (v e e Ple, o [oGers) O Reasoning
R ogical ADT Specification —
O = state :  (Var, Type)list; methods : Meth list;
eq C state X state; spec :  Meth — (P, Q)

Translation

e Nested commute statements? Treat
them as sequential composition!

Tr(commute c s; s,) = Tr(s;s,)

e Built-in ADTs?

Tr(tblle,] = e,) = inlineSpec(HT,tbl, .. .)



P '“T

STEVENS

Ml o
Kv INSTITUTE of TECHNOLOGY

Servois

Part B: Commutativity
Reasoning

¢n

commute ? { ranslate (co IDiHSaQins '
1t {s2y [ [mwesssd [P o 00 M

™ Synthesis ‘
TACAS'18 )4

ejk@arran:
Inferred
[11.2-22.3]:

int main(int argc, stringl[] argv) {

hashtable[lnt int] tbl =

int n = int_of_string(argv[1]);
int x = 1nt_of_str1ng(argv_2:),
int y = int_of_string(argv[3]);
int z = int of_string(argv:4:);
tbhl[x] =
thl[z] =
commute _ {
{
calcl(n);
if(ht_mem(tbl, x))
y = tbl[x];
}
{ if(ht_mem(tbl, 2z)) {
y = tbllz];
¥
calc2(n);}
¥
return 0;

new hashtable[int, int];

$ ./vcy.exe iﬁfér .
condition at .

tb1l[x] == tbl[z] && !(x ==

SLCEIUE $

. /benchmarks/ht-cond-mem—-get.vcy
. /benchmarks7irt=Cond-mem—-get.vcy:

z) || x == z




T STEVENS commute ? { || Transiate(co Pins, Qins . Sﬁﬁgggs ‘: o Part B: Commutat/\{/ty
@ e e {s1} 1s2} e Prn,Qrm TACAS'18 ) } " Reasoning

Group 1: Automatically Inferred Commute Conditions. All benchmarks, except those below in group (3).

Program Time (s) |Inferred Conditions

array-disjoint 063|]1 !'= J&& x =y || x ==y

array]l 0.75(1 !'=r[0] && r[@0] + 1 '=y && r[0] <=1 || r[@0] + 1 ==y && r[0] <=1

array?2 1.11|10 > a[@] && 1 !'= x || 1 == X

array3 1.13|d '=e & a !=b || a ==

calc W1 ==y8&0!=y8&&1>c8& 1!=c || ... || 1==c¢

conditional 0.18(x > @

counter 0.20(0 !=c

dict 382(i l=r & c+x!=y || c+ x =y

dot-product 0.24|true

even-odd 118|x % 2 ==x +y & 0 =y || 0 ==y

ht-add-put 2.24|tbl[z] ==u + 1 & u + 1 != 2

ht-cond-mem-get 1.54 |tbl[x] == tbl[z] & x != z || x == z

ht-cond-size-get 0.83|ht_size(thl) <=0 8&& 0 !'=z || @ == z

ht-simple 3064|x + a !=z & 3 == tbl[z] & y != 2z

linear-bool 362|0 <=y & 3 == x & 2 = x && 1 = x && x>0 8&& 0 !=x || 0 >y + 3 * x &&
2 == x && 1 != x && x > 0 && 0 != x

linear-cond 2652 <=y && 2 !'=y & 1 !=y || ... || 1 ==

linear 0.25|true

loop-amt == 1 & & amt == i_pre & & ctr - 1 > i_pre && i_pre <= amt && 0 != i_pre &&
i_pre <= ctr & amt != amt_pre && ctr - 1 > amt_pre && amt_pre <= amt && 0
I= amt_pre && amt_pre <= ctr & ctr - 1 !=1 & 1 != ctr & 1 != amt && 1
==ctr +amt || ... || amt == 1 && 1 == ctr & 1 != amt && 1 == ctr + amt

loop-disjoint 0.02 (true

loop-inter 463|0 == x && 0 =y || @ ==y

loop-simple 0.06 [true

matrix 0.71|10 ==y

nested-counter 62510 '=c & c !=t |l c==t: c 1= x && c <= x && 1 = x & t == x || ... ||




Part B: Commutativity
Reasoning

g071

Servois | |
™ Synthesis [
(TACAS18 ) 3

.;’iiﬁi“ STEVENS commute ? { Translate(co ])ins,Qins
kv INSTITUTE of TECHNOLOGY {51} {52} mmute,s,,s,) Prm,Qrm

Group 2: Automatically Verified Commute Conditions. Benchmarks for which inference output was suboptimal.
Program Time (s) | Verified? | Complete? | Provided Condition
array1 0.02 v VI r[0] <=0 || r[0] == 1 && y ==
calc 0.07 v ?1c > 0
counter 0.02 X —|true
even-odd 0.04 v Iy % 2 ==
linear-bool 0.02 v Vy<0-3*%xx8& x==21]]y>0 & & x ==
linear-cond 0.02 v VIy>0 || 0==y & x + 2 ==
loop-amt 0.04 v X|li%2==08%& (ctr > 0 &% amt > @ || ctr <= 0 && amt < -ctr)
nested-counter 0.05 v v |First commute block: @ != c & c !=t || c ==t
(cont.) v X|Second commute block: x == t & (x > ¢ || x == c && x > 1)
simple 0.04 v Xlc > a




commute ? { Translate(co l

Pins,Qins | [ Servois o Part B: Commutativity

Synthesi
of TECHNOLOGY ~'{S:I.}' {} | Prm,Qrm TKCEA\S:C;SS’ m Reasoning
- _ ADT Spec. Commute
COmmUte ? { PinsaQins 4 Servois N Cond.

___| Translate(co — : n
'{51} .{52} nnute,s,.s.) —VPremaorem Synthesis > qOm

} PeonsQeon (TACAS'18,

Reachability Solver
Reduce to

reachability

(Ultimate or
CPAchecker)




commute ? { Translate(co I

STEVENS

A
N
§ ii i iy
@ INSTITUTE of TECHNOLOGY

Pins,Qins | [ Servois o Part B: Commutativity

isl} 4s2y | | PonOm | \GACASS m Reasoning
- _ ADT Spec. Commute
COmmUte ? { PinsaQins 4 Servois N COﬂd.

___| Translate(co — : n
'{Sl} {52} mmute,s.,s.) _>Prem,0rem Synthesis > q0m

} PeonsQeon (TACAS'18,

Reachability Solver
Reduce to

reachability

(Ultimate or
CPAchecker)

Decomposing Data Structure
Commutativity Proofs with
mn-Differencing

Eric Koskinen'®™) and Kshitij Bansal?

! Stevens Institute of Technology, Hob|t A"/ (@721 P20 24
eric.koskinen@stevens.edu




i‘ii l:: i STEVENS

ug’ TTTTTTTTTT f TECHNOLOGY F:Lrtllrea

Beyond the interpreter.
Combine with promises/futures?
Beyond N-way commute blocks?

Combine with invariant generation:

{y<®o3} /* Example invariant */
commute _ {

{y=y + 3*x; } /* if x is negative, this will reduce y */

{ if (y<0) { x=2; } else { x=3; } } /* sensitive to whether y went below 0 */
3

j'_.




fun) STEVENS

ug’ TTTTTTTTTT f TECHNOLOGY F:Lrtllrea

Beyond the interpreter.
Combine with promises/futures?
Beyond N-way commute blocks?

Combine with invariant generation:

{ y <03} /x Example invariant =*/
commute _ {
{y=y + 3*%x; } /* if x is negative, this will reduce y */
{ 1f (y<0) { x=2; } else { x=3; } } /* sensitive to whether y went below 0 =*/

}

R JR
O >y + 3*xx && 2 == X
»w/ 0BTl \ A




o) STEVENS
\ Interested in Commutativity?

Workshop at PLDI next month!

}\PLD E Mon 13 - Fri 17 June 2022
San Diego, California, United States

San [/){(/ )K) ) )

Attending ~ Program ~ Tracks ~ Organization ~ Q C~ Sign in Sign up

A PLDI 2022 (series) / Commute (series) /

Commutativity Reasoning and Applications

Commute
This is the first instance of the Commutativity Reasoning & Applications

workshop (Commute 2022). organizing Committee

Commutativity Reasoning is becoming increasingly common and appears
in many contexts. Commutativity is used in the design of systems, in the Constantin Enea
design of data structures, in proof methodologies, in parallel execution : chle hni /
schemes, etc. The goal of this workshop is to bring together researchers L&y/techSSque
that are working in a variety of areas, with a common need for Erance
commutativity, to share ideas and goals. We aim to include researchers
who work on commutatmfy |.n many contexts: compilers, program logics, Azadeh Farzan
automata, concurrency, distributed systems/CRDTs, ML applications, etc.
. ~ University of

The workshop will be held on Monday June 13th and Tuesday June 14th. Toronto

Canada
Call for Papers Eric Koskinen
The workshop is open to all who are interested and/or working in the area cs):eT\éecr,\;g;stltute
of Commititativity Reaconina and Aobplicatione Thic incliides recsearchers in ogy




&¢4§I§VENS

of TECHNOLOGY

@ Interested in Commutativity?

Come visit!

Yl YUH BEE MR

o NN R Sy \ |
o INBISH 21l s ' W !
' b

L

.
=




STEVENS

illij § ii's
@ INSTITUTE of TECHNOLOGY

CYPRESS

CYBERSECURITY
PROGRAMMING LANGUAGES
AND SYSTEMS AT STEVENS




é¢i§IEVENS

E of TECHNOLOGY

Other recent things | didn’t have time for ...

. PP CAV’11, POPL’11, PLDI’13,
o Automatic temporal verification 514 10518

o Automatic relational verification PLDI'17, OOPSLA’19, CAV’21

o Automatic crash recoverability POPL’16

o Verifying binaries APLAS’21, IEEE S&P21
- - . APLAS’19, PODC’17,

o Transactional implementations VMCAI'17 PPoPP'08

o Semantics of transactions POPL’10, PLDI’15

www.erickoskinen. com




5 STEVENS

A
&
> "
§ ii il iy
kv TTTTTTTTTT f TECHNOLOGY

Thank you!



diim) STEVENS

INSTITUTE of TECHNOLOGY

Thank you!

racity X —+
ANaAat Cam - 2 P -
Not Secure | veracity-lang.org ORI * ¢ O @ Incognito (2)

Plcrs Release

Declarative Multicore Programming
with Commutativity

1 int n(int argc, string[]) argv) {
p. int n int_of_ string(argv(1l]);
3 int a int_of string(argv(3]);
B int b int _of string(argv(4]);
5 int c int of string(argv([5]):;
6 int u; int t:

7 commute _ {

8 - {{a=> D) F230 1)y

9 a a-((t<0)? =t ¢£); )}
10 {u {{a>a) T 2 1 T)5'}
11 }
12 0;
13 )
14

TRY WEB DEMO! PULL THE DOCKER! READ THE PAPER!



http://www.erickoskinen.com

