
Reasoning and

Programming with Commutativity

Eric Koskinen
Stevens Institute of Technology

www.erickoskinen.com

MIT • Monday, May 9, 2022

http://www.erickoskinen.com

Can we serve web pages faster?

Can we serve web pages faster?

Let me try to write something faster myself.

Wow, concurrency is hard!

Why does writing concurrent programs have to be so hard?

PPoPP 2008

PPoPP 2008

POPL 2010

PLDI 2015

PODC 2017

Still have to write concurrent programs.

Oh the dream of parallelizing compilers!

Still have to write concurrent programs.

Oh the dream of parallelizing compilers!

Wanted to understand program analysis better…

• Moved to Cambridge, UK

• Dissertation on program analysis for temporal

logic verification

• Abstraction-refinement, automata, …

• Started to think more and more about how

Wanted to understand program analysis better…

• Moved to Cambridge, UK

• Dissertation on program analysis for temporal

logic verification

• Abstraction-refinement, automata, …

• Started to think more and more about how

Symbolic program analysis parallelizationcould enable

Need for Efficiency

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

http://jakascorner.com/blog/2016/06/omp-for-reduction.html

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

http://jakascorner.com/blog/2016/06/omp-for-reduction.html

Exploits
Commutativity

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

http://jakascorner.com/blog/2016/06/omp-for-reduction.html

• Databases. e.g. Weihl 1988.

• Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.

• Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

• Transactional memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.
Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

• Runtime systems. e.g. Tripp et al, OOPSLA 2011.

• Software scalability. e.g. Clements et al., TOCS 2015.

• Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.

Commutativity is a well-known strategy for concurrency.

• Databases. e.g. Weihl 1988.

• Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.

• Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

• Transactional memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.
Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

• Runtime systems. e.g. Tripp et al, OOPSLA 2011.

• Software scalability. e.g. Clements et al., TOCS 2015.

• Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.

Commutativity is a well-known strategy for concurrency.

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

• Databases. e.g. Weihl 1988.

• Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.

• Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

• Transactional memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.
Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

• Runtime systems. e.g. Tripp et al, OOPSLA 2011.

• Software scalability. e.g. Clements et al., TOCS 2015.

• Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.

Commutativity is a well-known strategy for concurrency.

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

• Databases. e.g. Weihl 1988.

• Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.

• Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

• Transactional memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.
Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

• Runtime systems. e.g. Tripp et al, OOPSLA 2011.

• Software scalability. e.g. Clements et al., TOCS 2015.

• Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.

Commutativity is a well-known strategy for concurrency.

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

• Databases. e.g. Weihl 1988.

• Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.

• Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

• Transactional memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.
Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

• Runtime systems. e.g. Tripp et al, OOPSLA 2011.

• Software scalability. e.g. Clements et al., TOCS 2015.

• Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.

Commutativity is a well-known strategy for concurrency.

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

• Databases. e.g. Weihl 1988.

• Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.

• Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

• Transactional memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.
Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

• Runtime systems. e.g. Tripp et al, OOPSLA 2011.

• Software scalability. e.g. Clements et al., TOCS 2015.

• Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.

Commutativity is a well-known strategy for concurrency.

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

• Databases. e.g. Weihl 1988.

• Parallelizing compilers. e.g. Rinard & Diniz, TOPLAS 1997.

• Parallel graph algorithms. e.g. Kulkarni et al, PLDI 2007.

• Transactional memory. e.g. Ni et al., PPoPP 2007. Herlihy & Koskinen, PPoPP 2008.
Bronson et al., PODC 2010. Hassan et al., PPoPP 2014. Koskinen & Parkinson, PLDI 2015.
Dickerson et al., APLAS 2019.

• Runtime systems. e.g. Tripp et al, OOPSLA 2011.

• Software scalability. e.g. Clements et al., TOCS 2015.

• Layered concurrent programs. e.g. Kragl & Qadeer, CAV 2018.

Commutativity is a well-known strategy for concurrency.

Automatic parallelization
sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 10; i++)

{

 sum += a[i];

}

But programs don’t always commute …

Automatic parallelization

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Expensive, pure
computation

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Expensive, pure
computation

Another expensive,
pure computation

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Expensive, pure
computation

Another expensive,
pure computation

Can we run them in parallel?

Let’s try separating splitting the code.

Wouldn’t it be nice if we could parallelize these two blocks?

Can we run them in parallel?

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Can we run them in parallel?

Observation on c

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Can we run them in parallel?

Mutation of c

Observation on c

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Can we run them in parallel?

Mutation of c

Observation on c

A simple dataflow analysis cannot parallelize them.

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Dataflow dependency prevents naive parallelization.

Splitting differently doesn’t help; x conflicts.

Consider: what if c>0 initially?

  

Then these blocks are semantically independent. 
 

(with some atomicity assumptions)

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Idea: Making commutativity explicit can allow us
to weaken the dataflow dependency.

Observes if c>0

Decreases c by 1

Consider: what if c>0 initially?

  

Then these blocks are semantically independent. 
 

(with some atomicity assumptions)

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Idea: Making commutativity explicit can allow us
to weaken the dataflow dependency.

Increases c

Observes if c>0

Decreases c by 1

Consider: what if c>0 initially?

  

Then these blocks are semantically independent. 
 

(with some atomicity assumptions)

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

Idea: Making commutativity explicit can allow us
to weaken the dataflow dependency.

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

• Introduce the commute keyword.

• Programmer only has to reason sequentially.

• Verification tools need only reason sequentially.

• Obtain speedup from parallel execution.

Allow the programmer to explicitly express
conditional, sequential commutativity.

Idea: Making commutativity explicit can allow us
to weaken the dataflow dependency.

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

commute (c>0) {

 {

}

 {
 }

 }

• Introduce the commute keyword.

• Programmer only has to reason sequentially.

• Verification tools need only reason sequentially.

• Obtain speedup from parallel execution.

Allow the programmer to explicitly express
conditional, sequential commutativity.

Idea: Making commutativity explicit can allow us
to weaken the dataflow dependency.

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

if(c>0)

||

else x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

then

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

if(c>0)

||

else x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

then

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

commute (c>0) {

 {

}

 {
 }

 }

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

commute (c>0) {

 {

}

 {
 }

 }

Semantics?

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

commute (c>0) {

 {

}

 {
 }

 }

Semantics?

Synchronization?

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

commute (c>0) {

 {

}

 {
 }

 }

Semantics?

Synchronization?

Correct?

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

commute (c>0) {

 {

}

 {
 }

 }

Semantics?

Synchronization?

Correct?

Speedup?

✔︎ Introducing commute blocks

2 Semantic Implications & Correctness Criteria “Scoped Serializability”
 and lock synthesis

3 Demo of the Veracity language veracity-lang.org

4 Speedup

Part B:

5 Symbolic Commutativity Reasoning TACAS’18, JAR’20, VMCAI’21

6 Inferring/verifying commute blocks Translation to logic

2. Semantic Implications & Correctness Criteria

Want to parallelize a program s.

We can do so soundly when the parallel behavior

matches that of its equivalent straight-line code:

[[s]]nd = [[s]]par

Outcome: Get gains without changing

the way we write sequential programs.

2. Semantic Implications & Correctness Criteria

Sequential Behavior: non-deterministic

⟨commute(true){s1}{s2}, σ⟩
⟨s1;s2, σ⟩

⟨s2;s1, σ⟩

⇝nd
⇝nd

2. Semantic Implications & Correctness Criteria

Sequential Behavior: non-deterministic

⟨commute(true){s1}{s2}, σ⟩
⟨s1;s2, σ⟩

⟨s2;s1, σ⟩

⇝nd
⇝nd

Parallel Behavior: Interleaved, as expected:

⟨commute(true){s1}{s2}, σ⟩ ⇝par ⟨(⟨s1, ∅⟩, ⟨s2, ∅⟩,), skip, σ⟩

(Full semantics in the paper)

2. Semantic Implications & Correctness Criteria

Sequential Behavior: non-deterministic

⟨commute(true){s1}{s2}, σ⟩
⟨s1;s2, σ⟩

⟨s2;s1, σ⟩

⇝nd
⇝nd

Parallel Behavior: Interleaved, as expected:

⟨commute(true){s1}{s2}, σ⟩ ⇝par ⟨(⟨s1, ∅⟩, ⟨s2, ∅⟩,), skip, σ⟩

(Full semantics in the paper)

Want equivalence

(as state fns)

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

Serializability?

How to ensure equivalance.

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

Serializability?

y = 0; x = 1;

commute(true) {

 { commute(true)

 f1:{ x = 0; }

 f2:{ x = x*2; }}

 f3:{ if(x>=2) y = 1; }

}

How to ensure equivalance.

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

Serializability?

y = 0; x = 1;

commute(true) {

 { commute(true)

 f1:{ x = 0; }

 f2:{ x = x*2; }}

 f3:{ if(x>=2) y = 1; }

}

commute

(true)

commute

(true)

f1

f2

f3

How to ensure equivalance.

[x=x*2] • [if(x≥2)y=1] • [x=0]✘
f3 f1f2

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

Serializability?

y = 0; x = 1;

commute(true) {

 { commute(true)

 f1:{ x = 0; }

 f2:{ x = x*2; }}

 f3:{ if(x>=2) y = 1; }

}

commute

(true)

commute

(true)

f1

f2

f3

How to ensure equivalance.

Serializability is not the right condition.

[x=x*2] • [if(x≥2)y=1] • [x=0]✘
f3 f1f2

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

Serializability?

y = 0; x = 1;

commute(true) {

 { commute(true)

 f1:{ x = 0; }

 f2:{ x = x*2; }}

 f3:{ if(x>=2) y = 1; }

}

commute

(true)

commute

(true)

f1

f2

f3

How to ensure equivalance.

Serializability is not the right condition.

We introduce

Scoped Serializability

[x=x*2] • [if(x≥2)y=1] • [x=0]✘
f3 f1f2

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

Serializability?

y = 0; x = 1;

commute(true) {

 { commute(true)

 f1:{ x = 0; }

 f2:{ x = x*2; }}

 f3:{ if(x>=2) y = 1; }

}

commute

(true)

commute

(true)

f1

f2

f3

How to ensure equivalance.

Serializability is not the right condition.

We introduce

Scoped Serializability

[x=x*2] • [if(x≥2)y=1] • [x=0]✘
f3 f1f2

f3 can observe
intermediate x>=2

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.

Intuition: There exists a reordering of every interleaving

into a serial order H in which pairs of commute blocks
are adjacent in H.

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks! x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks! x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

lock unlock

lock

unlock

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks!
• Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010,
Golan-Gueta et al 2015.

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

lock unlock

lock

unlock

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks!
• Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010,
Golan-Gueta et al 2015.

• Not ideal for commute blocks.

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

lock unlock

lock

unlock

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks!
• Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010,
Golan-Gueta et al 2015.

• Not ideal for commute blocks.

• We describe new techniques:

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

lock unlock

lock

unlock

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks!
• Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010,
Golan-Gueta et al 2015.

• Not ideal for commute blocks.

• We describe new techniques:
• Achieve shorter windows of locking

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

lock unlock

lock

unlock

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks!
• Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010,
Golan-Gueta et al 2015.

• Not ideal for commute blocks.

• We describe new techniques:
• Achieve shorter windows of locking
• Instruction re-ordering

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

lock unlock

lock

unlock

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

• Synthesize Locks!
• Use prior works. e.g. Flanagan & Qadeer

2003, Cherem et al 2008, Vechev et al 2010,
Golan-Gueta et al 2015.

• Not ideal for commute blocks.

• We describe new techniques:
• Achieve shorter windows of locking
• Instruction re-ordering
• Details in the paper

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

lock unlock

lock

unlock

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

Theorem 5.5. If

• every commutativity condition in s is valid,

• and s is scoped-serializable,

Then s is parallelizable, ie, [[s]]nd = [[s]]par

2. Semantic Implications & Correctness Criteria

[[s]]nd = [[s]]parGoal:

How to ensure equivalance.
☞ How to enforce scoped serializability.

Theorem 5.5. If

• every commutativity condition in s is valid,

• and s is scoped-serializable,

Then s is parallelizable, ie, [[s]]nd = [[s]]par

🤔

✔︎ Introducing commute blocks

2 Semantic Implications & Correctness Criteria “Scoped Serializability”
 and lock synthesis

3 Demo of the Veracity language veracity-lang.org

4 Speedup

Part B:

5 Symbolic Commutativity Reasoning TACAS’18, JAR’20, VMCAI’21

6 Inferring/verifying commute blocks Translation to logic

✔︎

Veracity
www.veracity-lang.org

• New language, implemented in Multicore OCaml

Veracity
www.veracity-lang.org

• New language, implemented in Multicore OCaml

• Interpreter available. Compiler planned.

Veracity
www.veracity-lang.org

• New language, implemented in Multicore OCaml

• Interpreter available. Compiler planned.

• Support for builtin ADTs. Arrays, Maps/Dictionaries.

Veracity
www.veracity-lang.org

• New language, implemented in Multicore OCaml

• Interpreter available. Compiler planned.

• Support for builtin ADTs. Arrays, Maps/Dictionaries.

• libcuckoo for parallel maps. Li et al, EuroSys 2014.

Veracity
www.veracity-lang.org

• New language, implemented in Multicore OCaml

• Interpreter available. Compiler planned.

• Support for builtin ADTs. Arrays, Maps/Dictionaries.

• libcuckoo for parallel maps. Li et al, EuroSys 2014.

• Underlying SMT solvers. CVC4, CVC5, Z3.

Veracity
www.veracity-lang.org

• New language, implemented in Multicore OCaml

• Interpreter available. Compiler planned.

• Support for builtin ADTs. Arrays, Maps/Dictionaries.

• libcuckoo for parallel maps. Li et al, EuroSys 2014.

• Underlying SMT solvers. CVC4, CVC5, Z3.

• Examples were written in Veracity. Execute or inference.

Veracity
www.veracity-lang.org

• New language, implemented in Multicore OCaml

• Interpreter available. Compiler planned.

• Support for builtin ADTs. Arrays, Maps/Dictionaries.

• libcuckoo for parallel maps. Li et al, EuroSys 2014.

• Underlying SMT solvers. CVC4, CVC5, Z3.

• Examples were written in Veracity. Execute or inference.

Veracity
www.veracity-lang.org

ejk@arran:veracity/src$./vcy.exe interp ../benchmarks/ht-cond-mem-get.vcy 1 2 3 4 5

Return: 0

ejk@arran:veracity/src$

Veracity www.veracity-lang.org

Problem Size (logrithmic scale)

Ex
ec

ut
io

n
sp

ee
du

p
—

 P
ar

:S
eq

G
ro

up
ed

 b
y

pe
rfo

rm
an

ce
.

Evaluation: Speedup versus problem size

Programming with Commutativity

• Express conditional
commutativity.

• Parallel speedup
with sequential
reasoning.

• New correctness
condition.

• Infer or verify
commute
conditions …

www.veracity-lang.org

Veracity

✔︎ Introducing commute blocks

2 Semantic Implications & Correctness Criteria “Scoped Serializability”
 and lock synthesis

3 Demo of the Veracity language veracity-lang.org

4 Speedup

Part B:

5 Symbolic Commutativity Reasoning TACAS’18, JAR’20, VMCAI’21

6 Inferring/verifying commute blocks Translation to logic

✔︎

✔︎

✔︎

Part B: Commutativity
Reasoning

commute (𝛗) {

 { x = calc1(a);

 c = c + (x*x); }

 { if (c > 0 && y < 0)

 	 c = c - 1;

	 z = calc2(y);

 else

	 z = calc3(y); }

}

What does it mean for commute condition 𝛗 to be correct?

Part B: Commutativity
Reasoning

commute (𝛗) {

 { x = calc1(a);

 c = c + (x*x); }

 { if (c > 0 && y < 0)

 	 c = c - 1;

	 z = calc2(y);

 else

	 z = calc3(y); }

}

What does it mean for commute condition 𝛗 to be correct?

σ
σ1

Block 1

Block 2 σ2

σ12
Block 2

Block 1 σ21

Equivalent

states when [[φ]]σ

Part B: Commutativity
Reasoning

commute (𝛗) {

 { x = calc1(a);

 c = c + (x*x); }

 { if (c > 0 && y < 0)

 	 c = c - 1;

	 z = calc2(y);

 else

	 z = calc3(y); }

}

What does it mean for commute condition 𝛗 to be correct?

σ
σ1

Block 1

Block 2 σ2

σ12
Block 2

Block 1 σ21

Equivalent

states when [[φ]]σ

Blocks appear to behave

deterministically.

Part B: Commutativity
Reasoning

commute (𝛗) {

 { x = calc1(a);

 c = c + (x*x); }

 { if (c > 0 && y < 0)

 	 c = c - 1;

	 z = calc2(y);

 else

	 z = calc3(y); }

}

What does it mean for commute condition 𝛗 to be correct?

σ
σ1

Block 1

Block 2 σ2

σ12
Block 2

Block 1 σ21

Equivalent

states when [[φ]]σ

Blocks appear to behave

deterministically.

Need symbolic
reasoning

Part B: Commutativity
Reasoning

σ
σ1

Block 1

Block 2 σ2

σ12
Block 2

Block 1 σ21

Doesn’t mean these

are equal!

̂σ
̂σ1

Block 1

Block 2 ̂σ2

̂σ12
Block 2

Block 1 ̂σ21

Just because
these are equal

α Careful!

Part B: Commutativity
Reasoning

σ
σ1

Block 1

Block 2 σ2

σ12
Block 2

Block 1 σ21

Doesn’t mean these

are equal!

̂σ
̂σ1

Block 1

Block 2 ̂σ2

̂σ12
Block 2

Block 1 ̂σ21

Just because
these are equal

α

VMCAI 2021

Careful!

Part B: Commutativity
Reasoning

σ
σ1

Block 1

Block 2 σ2

σ12
Block 2

Block 1 σ21

Doesn’t mean these

are equal!

̂σ
̂σ1

Block 1

Block 2 ̂σ2

̂σ12
Block 2

Block 1 ̂σ21

Just because
these are equal

α

VMCAI 2021

Proof Rule for Decomposing Commutativity Reasoning

Careful!

Part B: Commutativity
Reasoning

φn
m

insert(){…}

remove(){…}

contains()…

ADT Impl. Commute

Cond.

Part B: Commutativity
Reasoning

φn
m

insert(){…}

remove(){…}

contains()…

ADT Impl. Commute

Cond.

Part B: Commutativity
Reasoning

φn
m

insert(){…}

remove(){…}

contains()…

ADT Impl. Commute

Cond.

ADT Spec.
Pins,Qins

Prem,Qrem

Pcon,Qcon

Part B: Commutativity
Reasoning

φn
m

insert(){…}

remove(){…}

contains()…

ADT Impl. ADT Spec.
Pins,Qins

Prem,Qrem

Pcon,Qcon

Commute

Cond.

TACAS 2018

Servois
Synthesis
TACAS’18

Part B: Commutativity
Reasoning

φn
m

ADT Spec.
Pins,Qins

Prem,Qrem

Pcon,Qcon

Commute

Cond.Servois

Synthesis
TACAS’18

commute ? {

 {s1} {s2}

}

Translate(co
mmute,s1,s2)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

TACAS’18/JAR’20

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Logical ADT Specification

TACAS 2018, JAR 2020 (φn
m, φn

m)

SERVOIS

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

1. Verifying commute condition for methods

valid ⇒

φn
m(σ, x̄, ȳ)

φn
m(σ, x̄, ȳ) m(x̄)/rm ⋈ n(ȳ)/rn

m(x̄)/rm, n(ȳ)/rn

…

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

1. Verifying commute condition for methods

valid ⇒

φn
m(σ, x̄, ȳ)

φn
m(σ, x̄, ȳ) m(x̄)/rm ⋈ n(ȳ)/rn

m(x̄)/rm, n(ȳ)/rn

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

…

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

1. Verifying commute condition for methods

valid ⇒

φn
m(σ, x̄, ȳ)

φn
m(σ, x̄, ȳ) m(x̄)/rm ⋈ n(ȳ)/rn

m(x̄)/rm, n(ȳ)/rn

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

…

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

1. Verifying commute condition for methods

valid ⇒

φn
m(σ, x̄, ȳ)

φn
m(σ, x̄, ȳ) m(x̄)/rm ⋈ n(ȳ)/rn

m(x̄)/rm, n(ȳ)/rn

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

…

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

1. Verifying commute condition for methods

valid ⇒

φn
m(σ, x̄, ȳ)

φn
m(σ, x̄, ȳ) m(x̄)/rm ⋈ n(ȳ)/rn

m(x̄)/rm, n(ȳ)/rn

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

…
Quantifier
alternation

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

1. Verifying commute condition for methods

valid ⇒

φn
m(σ, x̄, ȳ)

φn
m(σ, x̄, ȳ) m(x̄)/rm ⋈ n(ȳ)/rn

m(x̄)/rm, n(ȳ)/rn

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the
respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case, our
algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S
and another with H ′

2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition
for commutativity, while H ′

2 is a strong enough precondition for non-commutativity. Consequently, H2 is
added as a new conjunct to ϕ, yielding ϕ ≡ x %= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̂ is updated to be:
ϕ̂ ≡ (x = y ∧ x /∈ S). No further recursive calls are made so the algorithm terminates, and we have obtained
a precise (complete) commutativity/non-commutativity specification: ϕ ∨ ϕ̂ is valid.

Validity query. So far we relied on intutition for when add and contains commute. We make it this more
precise now to give a flavor of the validity queries being generated, and to illustrate how we avoid quantifier
alternation which arises when defining commutativity.

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract state was just the

contents of the set). Denote by σ
m(a)/r
−−−−→ σ′ the predicate which is true iff on application of method m with

arguments a on state σ0, the return value is r and new state is σ′. In our example, for add this predicate
holds when r = (a %∈ S) and S′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and
S′ = S. We note that we only work with deterministic systems (this was not a limitation in our experiments),
i.e. for any pre-state and method with specific arguments, there is atmost one post-state. At times, there
might be no valid post state, and it is important to capture this. For example, one cannot pop an empty
queue – so push followed by pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods m and n is: (i) for
all abstract states σ0, whenever m with arguments x (returning value rm) followed by n with arguments y
(returning value rn) is possible, then the reverse application n(y) followed by m(x) is also possilbe and gives
the same abstract state and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0,σ1,σ2, x, y, rm, rn. (σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 =⇒ (∃σ3.σ0

n(y)/rn
−−−−−→ σ3

m(x)/rm
−−−−−−→ σ2))

∧ (σ0
n(y)/rn
−−−−−→ σ1

m(x)/rm
−−−−−−→ σ2 =⇒ (∃σ3.σ0

m(x)/rm
−−−−−−→ σ3

n(y)/rn
−−−−−→ σ2))

As one can see above, there is quantifier alternation if we use the natural encoding. When translated to a
satisfiability query for an SMT solver, the inner existential quantifier stays as a universal quantifier. Since
SMT solvers cannot handle quantifiers very well, we do a transformation which allows us to avoid quantifier
alternation. We enforce that there is always a post-state by adding a new Err state in our set of abstract
states. Whenever, there is no post-state for a given state, method and its arguments, we add a transition to
the abstract Err state. Once in Err state, we always stay in Err state. Under this modified encoding, it is
easy to prove that the following check encodes commutativity defined above:

∀σ0,σ1,σ2,σ3,σ4, x, y, rm, rn, r′m, r′n. σ0
m(x)/rm
−−−−−−→ σ1

n(y)/rn
−−−−−→ σ2 ∧ σ0

n(y)/r′
n−−−−−→ σ3

m(x)/r′
m−−−−−−→ σ4

∧ ((σ2 %= Err ∨ σ4 %= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as the existential one to
get a handle on the post state.

3 Evaluation

We have implemented the algorithm in Figure 1 in our tool Servois‡. We applied our tool to the SMT
encoding of several data structures with states of the transition system encoded as tuples of variables and
transitions (methods) encoded using logical formulae over old/new states, method arguments and return
values. We experimented with two choose implementations. In the first, deubbed “simple”, we only enforce

‡http://cs.nyu.edu/~kshitij/projects/servois/

3

…
Quantifier
alternation

Avoid introducing quantifiers in

encoding of commutativity

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

valid ⇒

φn
m(σ, x̄, ȳ)

m(x̄)/rm ⋈ n(ȳ)/rn

1. Verifying commute condition
2. Synthesize commute condition

Use a form of abstraction-refinement.

Start with candidate commutativity condition H

H

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃

H

Refine(H)

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

H

Logical ADT Specification

 add H to φ✓ If valid(H ⇒ m⋈n):

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

H

Logical ADT Specification

 add H to φ✓ If valid(H ⇒ m⋈n):

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

✓ If valid(H ⇒ m⋈⃫n): add H to φ̃
H

Logical ADT Specification

 add H to φ✓ If valid(H ⇒ m⋈n):

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

✓ If valid(H ⇒ m⋈⃫n): add H to φ̃
H

Logical ADT Specification

 add H to φ✓ If valid(H ⇒ m⋈n):

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

✓ If valid(H ⇒ m⋈⃫n): add H to φ̃
H

Logical ADT Specification

 add H to φ✓ If valid(H ⇒ m⋈n):

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

✓ If valid(H ⇒ m⋈⃫n): add H to φ̃

✓ If neither:
 P=CHOOSE(…)
 Refine(H /\ P); Refine(H /\ ¬P)

HH ∧ p

H ∧ ¬p

Logical ADT Specification

 add H to φ✓ If valid(H ⇒ m⋈n):

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition via abstraction-refinement

φ 

Commutes

Doesn’t
Commute

φ̃
Refine(H)

✓ If valid(H ⇒ m⋈⃫n): add H to φ̃

✓ If neither:
 P=CHOOSE(…)
 Refine(H /\ P); Refine(H /\ ¬P)

Use counterex’s

and

“poke” heuristic.

Generate preds, etc.

HH ∧ p

H ∧ ¬p

Logical ADT Specification

 add H to φ✓ If valid(H ⇒ m⋈n):

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m(σ, x̄, ȳ)1. Verifying commute condition

2. Synthesize commute condition
1 REFINEm

n (H,P) {
2 if valid(H) m .̂/ n) then
3 ' := ' _H;
4 else if valid(H) m \̂./ n) then
5 '̃ := '̃ _H;
6 else
7 let �c,�nc = counterex. to .̂/ and \̂./ (resp.) in
8 let p = CHOOSE(H,P,�c,�nc) in
9 REFINEm

n (H ^ p, P \ {p});
10 REFINEm

n (H ^ ¬p, P \ {p});
11 }
12 main {
13 ' := false; '̃ := false;
14 try { REFINEm

n (true,P); }
15 catch (InterruptedException e) { skip; }
16 return(', '̃);
17 }

Figure 2. The refinement algorithm for generating a commutativity condition
' and non-commutativity condition '̃ for two methods m and n.

We thus define a check for when '
n
m is a non-commutativity

condition with the following syntactic sugar:

valid(Hn
m) m \̂./ n) ⌘ valid

0

BB@

8�̂0 x̄ ȳ r̄ s̄.

H
n
m(�̂0, x̄, ȳ, r̄, s̄))

�̂0 6= Err)
m(x̄)/r̄ \̂./ n(ȳ)/s̄

1

CCA

V. COMMUTATIVITY CONDITION REFINEMENT

We now present an iterative refinement strategy that, when
given a lifted abstract transition system, generates commu-
tativity and non-commutativity conditions. In Section VI we
discuss soundness and relative completeness.

The refinement algorithm symbolically searches the state
space for regions where the operations commute (or do not
commute) in a conjunctive manner, adding on one predicate
at a time. We add each subregion H (described conjunctively)
in which commutativity always holds to a growing disjunctive
description of the commutativity condition ', and each sub-
region H in which commutativity never holds to a growing
disjunctive description of the non-commutativity condition '̃.

The algorithm in Figure 2 begins by setting ' = false and
'̃ = false. REFINE begins a symbolic binary search through
the state space H , beginning with the entire state: H = true.
It also may use a collection of predicates P (discussed later).

At each iteration, REFINE checks whether the current H

represents a region of space for which m and n always
commute: H) m .̂/ n. If so, H can be disjunctively added
to '. It may, instead be the case that H represents a region of
space for which m and n never commute: H) m \̂./ n. If so,
H can be disjunctively added to '̃. If neither of these cases
hold, we have two counterexamples. �c is the counterexample
to commutativity, returned if the validity check on Line 2 fails.
�nc is the counterexample to non-commutativity, returned if
the validity check on Line 4 fails.

We now need to subdivide H into two regions. This is
accomplished by selecting a new predicate p via the CHOOSE
method. For now, let the method CHOOSE and the choice of
predicate vocabulary P be parametric. REFINE is sound re-
gardless of the behavior of CHOOSE, in Section VI we give the
conditions on CHOOSE that ensure relative completeness, and
in Section VII, we discuss our particular strategy. Regardless
of what p is returned by CHOOSE, two recursive calls are
made to REFINE, one with argument H ^ p, and the other
with argument H ^ ¬p.

The refinement algorithm generates commutativity condi-
tions that are in disjunctive normal form: ' ::= ' _ ' | (Y)
where Y ::= Y ^Y | p and p is from a language of predicates.
Hence, any (finite) logical formula can be represented. This
logical language is more expressive than previous commuta-
tivity logics that, because they were designed for run-time pur-
poses, were restricted to conjunctions of inequalities [16] and
boolean combinations of predicates over finite domains [8].

VI. SOUNDNESS AND RELATIVE COMPLETENESS

The following theorem shows that ' is a sound approxima-
tion of when m .̂/ n always holds (and similar for '̃).

Theorem VI.1 (Soundness). At each iteration of REFINEm
n ,

') m .̂/ n, and '̃) m \̂./ n.

Proof. By induction. Initially, false is a suitable condition for
when commutativity holds, and false is a suitable condition
under which commutativity does not hold. At each iteration, '
or '̃ may be updated (not both, but for soundness this does not
matter). Consider '. It must also be the case that ('_H))
m .̂/ n because we know that ') m .̂/ n (from the previous
iteration) and that H) m .̂/ n (from the valid check on
Line 2). Similar reasoning for '̃.

Soundness holds regardless of what CHOOSE returns (not
surprising since updates to ' and '̃ are guarded by validity
checks) and even when the theories used to model the under-
lying data-structure are incomplete. Next we show that ter-
mination implies completeness (Lemma VI.2) and give some
conditions under which termination, and thus completeness, is
ensured (Theorem VI.3).

Lemma VI.2. If REFINEm
n terminates, then ' _ '̃.

Proof. The recursive calls of the REFINE algorithm induces
a binary tree T , where nodes are labeled by the conjunction
of predicates. If REFINE terminates, then T is finite, and each
node is labeled with a finite conjunction p0 ^ ... ^ pn.

Claim. The disj. of all leaf node labels is valid. Pf. By
induction on the tree. Base case: a single-node tree has label
true. Inductive case: for every new node created, labeled with
a new conjunct ...^p, there is a sibling node with label ...^¬p.

Each leaf node of tree T , labeled with conjunction � arises
from REFINE reaching a base case where, by construction, the
conjunction � is disjunctively added to either ' or '̃. Since
REFINE terminates, all conjunctions are added to either ' or
'̃ and, thus, ' _ '̃ must be valid.

5

Logical ADT Specification

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Set Abstract Data Type
S

• Proof of soundness and relative completeness (Sec. VI).
• Automated extraction of base formula terms (Sec. VII).
• SMT-based implementation (Sec. VII).
• Demonstrated efficacy for several key data structures

including Set, HashTable, Accumulator, Counter, and
Stack (Sec. VII).

Other related work. Both Aleen and Clark [3] and Tripp
et al. [25] identify sequences of actions that commute (via
random interpretation and dynamic analysis, respectively) but
neither technique yields an explicit commutativity condition.
Kulkarni et al. [16] point out that varying degrees of com-
mutativity specification precision are useful. Kim and Rinard
[13] use Jahob to verify manually specified commutativity
conditions of several different linked data structures. Data-
structure commutativity specifications are also found in dy-
namic analysis techniques [8].

More distantly related is the work on synthesizing program
implementations, such as CEGIS [23], and synchronization
synthesis [28], [27]. Aderhold [2] describes a method to
synthesize, or extract, induction axioms from programs with
indirect recursive calls (e.g. algorithms on data structures).
Leino [18] explains the process by which verification con-
ditions are generated for the object-oriented language Spec#.
As with our encoding scheme, Leino’s conditions target SMT
solvers.

II. OVERVIEW

Motivation. Specifying commutativity conditions is nontriv-
ial. Not only is this task burdensome since it has to be done
pairwise for all methods (i.e. quadratic), but even if there are
few operations, commutativity conditions are often subtle.

As an illustration, consider the Set ADT, whose state
consists of a single variable, S, that stores an unordered
collection of unique elements. We focus on two operations:

• contains(x)/bool, which performs a side-effect-
free check whether the element x is in S; and

• add(y)/bool, which adds y to S if it is not already in
there and returns true, or otherwise returns false.

add and contains clearly commute if they refer to different
elements in the set. There is, however, another case that is less
obvious: add and contains commute if they refer to the
same element e, as long as in the prestate e 2 S. In this case,
in both orders of execution add and contains leave the set
unmodified and return false and true, respectively.

Capturing precise conditions such as these by hand, and
doing so for many pairs of operations, is tedious, error prone,
and benefits from automation.
Iterative Refinement Algorithm. The algorithm we describe in
this paper automatically produces a precise logical formula '

that captures this commutativity condition, i.e. the disjunction
of the two cases above: ' ⌘ x 6= y _ (x = y ^ x 2 S).
The algorithm also generates the conditions under which the
methods do not commute: '̃ ⌘ x = y^x /2 S. This is precise
since ' is the negation of '̃.

H0 ≡ true H1 ≡ x = y

χc = {x=0,y=0,S=∅}

χnc={x=0,y=1,S={0}}
H'1 ≡ x ≠ y

H2 ≡ x = y ∧ x∈S

H'2 ≡ x = y ∧ x∉S

valid(H'1!"m ⋈ n)

χc = {x=0,y=0,S=∅}
χnc ={x=0,y=0,S={0}}

valid(H2!""m ⋈ n)

valid(H'2! "m ⋈ n)

φ := false ∨ (x ≠ y)
 ∨ (x=y ∧ x∈S)

φ := false ∨ (x ≠ y)

φ᷉ := false ∨
 (x=y ∧ x∉S)

#

Figure 1. An example of how our technique generates commutativity condi-
tions for methods add and contains operating on a Set. Each subsequent
panel depicts a partitioning of the state space. The counterexamples �c,�nc
give values for the arguments x, y and the current state of the set S.

The main thrust of the algorithm is to recursively subdivide
the state space via predicates until, at the base case, regions
are found that are either entirely commutative or else entirely
non-commutative. As in the example above, the conditions we
incrementally generate are denoted ' and '̃, respectively.

We illustrate how our algorithm proceeds on the running
example in Figure 1. We denote by H the logical formula that
describes the current state space at a given recursive call. As
expected, we begin with H0 = true, ' = false, and '̃ =
false. There are essentially three cases for a given H: (i) H

describes a precondition for m and n in which m and n always
commute; (ii) H describes a precondition for m and n in
which m and n never commute; or (iii) neither of the above.
The latter case drives the recursive algorithm to subdivide the
region by choosing a new predicate.

In Section VI, we state the formal guarantees of the al-
gorithm. We have proved that it is sound, i.e. it produces
sound commutativity conditions, even if aborted. Soundness is
guaranteed even if the ADT description involves undecidable
theories. We further show that termination implies complete-
ness, and specify broad conditions that imply termination (i.e.
relative completeness).

Challenges. While the algorithm, as outlined so far, executes
a relatively standard refinement loop, there are interesting
challenges that are implicit in its description.

The first challenge pertains to the complexity and decid-
ability of the validity queries discharged to the supporting
SMT solver. In particular, if the query contains alternating
quantification (specifically the 89 pattern), then decidability is
lost. In our technique, we avoid introducing additional quan-
tification by construction. Hence, if the underlying theories
are decidable, then the queries we pose to the SMT solver are
guaranteed to also be decidable. We achieve this mechanically
by symbolically completing the (potentially) partial transition
system into a total system through the addition of a new Err

state. Err becomes the image of states without successors.
This modified encoding, formalized in Section IV, ensures that
universal quantification suffices without the need to introduce
additional quantification.

Next, there is the critical question of which predicates

2

• Proof of soundness and relative completeness (Sec. VI).
• Automated extraction of base formula terms (Sec. VII).
• SMT-based implementation (Sec. VII).
• Demonstrated efficacy for several key data structures

including Set, HashTable, Accumulator, Counter, and
Stack (Sec. VII).

Other related work. Both Aleen and Clark [3] and Tripp
et al. [25] identify sequences of actions that commute (via
random interpretation and dynamic analysis, respectively) but
neither technique yields an explicit commutativity condition.
Kulkarni et al. [16] point out that varying degrees of com-
mutativity specification precision are useful. Kim and Rinard
[13] use Jahob to verify manually specified commutativity
conditions of several different linked data structures. Data-
structure commutativity specifications are also found in dy-
namic analysis techniques [8].

More distantly related is the work on synthesizing program
implementations, such as CEGIS [23], and synchronization
synthesis [28], [27]. Aderhold [2] describes a method to
synthesize, or extract, induction axioms from programs with
indirect recursive calls (e.g. algorithms on data structures).
Leino [18] explains the process by which verification con-
ditions are generated for the object-oriented language Spec#.
As with our encoding scheme, Leino’s conditions target SMT
solvers.

II. OVERVIEW

Motivation. Specifying commutativity conditions is nontriv-
ial. Not only is this task burdensome since it has to be done
pairwise for all methods (i.e. quadratic), but even if there are
few operations, commutativity conditions are often subtle.

As an illustration, consider the Set ADT, whose state
consists of a single variable, S, that stores an unordered
collection of unique elements. We focus on two operations:

• contains(x)/bool, which performs a side-effect-
free check whether the element x is in S; and

• add(y)/bool, which adds y to S if it is not already in
there and returns true, or otherwise returns false.

add and contains clearly commute if they refer to different
elements in the set. There is, however, another case that is less
obvious: add and contains commute if they refer to the
same element e, as long as in the prestate e 2 S. In this case,
in both orders of execution add and contains leave the set
unmodified and return false and true, respectively.

Capturing precise conditions such as these by hand, and
doing so for many pairs of operations, is tedious, error prone,
and benefits from automation.
Iterative Refinement Algorithm. The algorithm we describe in
this paper automatically produces a precise logical formula '

that captures this commutativity condition, i.e. the disjunction
of the two cases above: ' ⌘ x 6= y _ (x = y ^ x 2 S).
The algorithm also generates the conditions under which the
methods do not commute: '̃ ⌘ x = y^x /2 S. This is precise
since ' is the negation of '̃.

H0 ≡ true H1 ≡ x = y

χc = {x=0,y=0,S=∅}

χnc={x=0,y=1,S={0}}
H'1 ≡ x ≠ y

H2 ≡ x = y ∧ x∈S

H'2 ≡ x = y ∧ x∉S

valid(H'1!"m ⋈ n)

χc = {x=0,y=0,S=∅}
χnc ={x=0,y=0,S={0}}

valid(H2!""m ⋈ n)

valid(H'2! "m ⋈ n)

φ := false ∨ (x ≠ y)
 ∨ (x=y ∧ x∈S)

φ := false ∨ (x ≠ y)

φ᷉ := false ∨
 (x=y ∧ x∉S)

#

Figure 1. An example of how our technique generates commutativity condi-
tions for methods add and contains operating on a Set. Each subsequent
panel depicts a partitioning of the state space. The counterexamples �c,�nc
give values for the arguments x, y and the current state of the set S.

The main thrust of the algorithm is to recursively subdivide
the state space via predicates until, at the base case, regions
are found that are either entirely commutative or else entirely
non-commutative. As in the example above, the conditions we
incrementally generate are denoted ' and '̃, respectively.

We illustrate how our algorithm proceeds on the running
example in Figure 1. We denote by H the logical formula that
describes the current state space at a given recursive call. As
expected, we begin with H0 = true, ' = false, and '̃ =
false. There are essentially three cases for a given H: (i) H

describes a precondition for m and n in which m and n always
commute; (ii) H describes a precondition for m and n in
which m and n never commute; or (iii) neither of the above.
The latter case drives the recursive algorithm to subdivide the
region by choosing a new predicate.

In Section VI, we state the formal guarantees of the al-
gorithm. We have proved that it is sound, i.e. it produces
sound commutativity conditions, even if aborted. Soundness is
guaranteed even if the ADT description involves undecidable
theories. We further show that termination implies complete-
ness, and specify broad conditions that imply termination (i.e.
relative completeness).

Challenges. While the algorithm, as outlined so far, executes
a relatively standard refinement loop, there are interesting
challenges that are implicit in its description.

The first challenge pertains to the complexity and decid-
ability of the validity queries discharged to the supporting
SMT solver. In particular, if the query contains alternating
quantification (specifically the 89 pattern), then decidability is
lost. In our technique, we avoid introducing additional quan-
tification by construction. Hence, if the underlying theories
are decidable, then the queries we pose to the SMT solver are
guaranteed to also be decidable. We achieve this mechanically
by symbolically completing the (potentially) partial transition
system into a total system through the addition of a new Err

state. Err becomes the image of states without successors.
This modified encoding, formalized in Section IV, ensures that
universal quantification suffices without the need to introduce
additional quantification.

Next, there is the critical question of which predicates

2

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Don’t Know

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Don’t KnowH = true

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Don’t Know

true =>

contains(x)/bool

⋈
add(y)/bool?

H = true

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Don’t Know

true =>

contains(x)/bool

⋈
add(y)/bool?

H = true

x=0,
y=0
S={}

Counterexample (⋈)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Don’t Know

true =>

contains(x)/bool

⋈
add(y)/bool?

H = true

true =>

contains(x)/bool

⋈⃫
add(y)/bool?

x=0,
y=0
S={}

Counterexample (⋈)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Don’t Know

true =>

contains(x)/bool

⋈
add(y)/bool?

H = true

true =>

contains(x)/bool

⋈⃫
add(y)/bool?

x=0,
y=0
S={}

Counterexample (⋈)

x=0,
y=1
S={}

Counterexample (⋈⃫)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Don’t Know

true =>

contains(x)/bool

⋈
add(y)/bool?

H = true

true =>

contains(x)/bool

⋈⃫
add(y)/bool?

H = true ∧ p
H = true ∧ ¬p

x=0,
y=0
S={}

Counterexample (⋈)

x=0,
y=1
S={}

Counterexample (⋈⃫)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

p: (x = y)

H = true ∧ (x=y)
H = true ∧

¬(x=y)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

p: (x = y)

H = true ∧ (x=y)
H = true ∧

¬(x=y)
x=0,
y=0
S={}

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

p: (x = y)

H = true ∧ (x=y)
H = true ∧

¬(x=y)
x=0,
y=0
S={}

x=0,
y=1
S={}

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

H: ¬(x = y)

H = true ∧ (x=y)
H = true ∧

¬(x=y)
Yes!

H =>

contains(x)/bool

⋈
add(y)/bool?

H = true ∧
¬(x=y)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

H: (x = y)

H = true ∧ (x=y)
H = true ∧

¬(x=y)

H =>

contains(x)/bool

⋈
add(y)/bool?

H = true ∧
¬(x=y)

H =>

contains(x)/bool

⋈⃫
add(y)/bool?

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

H: (x = y)

H = true ∧ (x=y)
H = true ∧

¬(x=y)

H =>

contains(x)/bool

⋈
add(y)/bool?

H = true ∧
¬(x=y)

x=0,
y=0
S={}

Counterexample (⋈)

H =>

contains(x)/bool

⋈⃫
add(y)/bool?

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

H: (x = y)

H = true ∧ (x=y)
H = true ∧

¬(x=y)

H =>

contains(x)/bool

⋈
add(y)/bool?

H = true ∧
¬(x=y)

x=0,
y=0
S={}

Counterexample (⋈)

x=0,
y=1

S={0}

Counterexample (⋈⃫)

H =>

contains(x)/bool

⋈⃫
add(y)/bool?

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

p’: (x ∈ S)

H = true ∧
(x=y) ∧ (x ∉ S)

H = true ∧
¬(x=y)

H = true ∧
¬(x=y)

H = true ∧
(x=y) ∧ (x ∈ S)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

H = true ∧
(x=y) ∧ (x ∉ S)

H = true ∧
¬(x=y)

H = true ∧
¬(x=y)

H = true ∧
(x=y) ∧ (x ∈ S)

φ

φ̃

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

H = true ∧
(x=y) ∧ (x ∉ S)

H = true ∧
¬(x=y)

H = true ∧
¬(x=y)

H = true ∧
(x=y) ∧ (x ∈ S)

φ

φ̃

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

• Smart Contracts. Ensure determinism.

• Concurrent verification. Partial Order reduction,
transactional memory, etc.

• Testing for interactions between code blocks.

• CRDTs. Distributed computing.

• Refactoring (and other relational reasoning).

• Code synthesis. Eg, synthesized conditions become

specification for synchronization synthesis.

• Commute blocks in Veracity!

Applications of Commutativity Synthesis

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

SERVOIS
Implemented in Python with CVC4.

Available on GitHub.

Kshitij Bansal
PhD student at NYU

Now at Google

Omer Tripp
PhD student at TAU

Now at Amazon

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

SERVOIS 2.0

Coming very soon!

• More solvers! CVC4, CVC5, Z3, …

• More theories! e.g bitvectors.

• Faster! Reimplemented in OCaml from scratch.

• Better predicate generation.

• Better predicate selection.

• Command-line or Library API.

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m

ADT Spec.
Pins,Qins

Prem,Qrem

Pcon,Qcon

Commute

Cond.Servois

Synthesis
TACAS’18

commute ? {

 {s1} {s2}

}

Translate(co
mmute,s1,s2)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Logical ADT Specification

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

m1 :

m2 :

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Logical ADT Specification

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

m1 :

m2 :

But m1 is code, not a
logical spec.

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Logical ADT Specification

x = calc1(a);

c = c + (x*x);

if (c > 0 && y < 0) {

	 c = c - 1;

	 z = calc2(y);

} else {

	 z = calc3(y);

}

m1 :

m2 :

But m1 is code, not a
logical spec.

(or (and

 (let ((x_1 a)

 (let ((c_1 (+ c (* x_1 x_1))))

 (and (= c_new c_1) (= x_new x_1))))

(= a_new a) (= z_new z) (= y_new y)

(= size_new size))))

Translate to a logical post-condition.

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Logical ADT Specification

Translation
• Nested commute statements? Treat

them as sequential composition!

• Built-in ADTs?

Tr(commute c s1 s2) = Tr(s1;s2)

Tr(tbl[e1] = e2) = inlineSpec(HT, tbl, . . .)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

ejk@arran:veracity/src$./vcy.exe infer ../benchmarks/ht-cond-mem-get.vcy

Inferred condition at ../benchmarks/ht-cond-mem-get.vcy:

 [11.2-22.3]: tbl[x] == tbl[z] && !(x == z) || x == z

ejk@arran:veracity/src$

int main(int argc, string[] argv) {

	 hashtable[int,int] tbl = new hashtable[int,int];

	 int n = int_of_string(argv[1]);

	 int x = int_of_string(argv[2]);

	 int y = int_of_string(argv[3]);

	 int z = int_of_string(argv[4]);

	 tbl[x] = 42;

	 tbl[z] = 42;

	 commute _ {

	 	 {

	 	 	 calc1(n);

	 	 	 if(ht_mem(tbl, x))

	 	 	 y = tbl[x];

	 	 }

	 	 {	 if(ht_mem(tbl, z)) {

	 	 	 	 y = tbl[z];

	 	 	 }

	 	 	 calc2(n);}

	 }

	 return 0;

}

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m

ADT Spec.
Pins,Qins

Prem,Qrem

Pcon,Qcon

Commute

Cond.Servois

Synthesis
TACAS’18

commute ? {

 {s1} {s2}

}

Translate(co
mmute,s1,s2)

Reduce to
reachabilityφn

m

Reachability Solver
(Ultimate or

CPAchecker)

Part B: Commutativity
Reasoningφn

m
Pins,Qins

Prm,Qrm

Servois
Synthesis
TACAS’18

commute ? {

 {s1} {s2}

Translate(co
mmute,s1,s2)

φn
m

ADT Spec.
Pins,Qins

Prem,Qrem

Pcon,Qcon

Commute

Cond.Servois

Synthesis
TACAS’18

commute ? {

 {s1} {s2}

}

Translate(co
mmute,s1,s2)

Reduce to
reachabilityφn

m

Reachability Solver
(Ultimate or

CPAchecker)

VMCAI 2021

Future

Beyond the interpreter.

Combine with promises/futures?

Beyond N-way commute blocks?

Combine with invariant generation:

Future

Beyond the interpreter.

Combine with promises/futures?

Beyond N-way commute blocks?

Combine with invariant generation:

Interested in Commutativity?

Workshop at PLDI next month!

Interested in Commutativity?

Come visit!

Other recent things I didn’t have time for …

◦ Automatic temporal verification CAV’11, POPL’11, PLDI’13,
LICS’14, LICS’18

◦ Automatic relational verification PLDI’17, OOPSLA’19, CAV’21

◦ Automatic crash recoverability POPL’16

◦ Verifying binaries APLAS’21, IEEE S&P’21

◦ Transactional implementations APLAS’19, PODC’17,
VMCAI’17, PPoPP’08

◦ Semantics of transactions POPL’10, PLDI’15

www.erickoskinen.com

Thank you!

Thank you!

www.veracity-lang.org

www.erickoskinen.com

http://www.erickoskinen.com

