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How do authors argue for correctness? 🤔
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• Concurrent object proof methodology based on 
representative interleavings.

• Formal version of concurrent object authors’ “scenarios.”
• Technique: For an object, find a core set of such 

representatives—(a “quotient”) described by a quotient 
expression (as seen on previous slide).

• Each representative interleaving equivalent to infinitely 
many others.

• Benefit: Easier to work with quotient, e.g., linearizability.

Idea
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One trace  of object τ ∈ [[O]] O

Defining an Object’s Quotient
• Trace equivalence relation up to commutativity

t2:

t3:

t1:
Single-swap: 

( )τ ≡1 τ′￼

Definition: Trace equivalence up to commutativity denoted 
 is the least reflexive-transitive relation that includes 

all such “single-swaps” .
τ ≡⋈ τ′￼

τ ≡1 τ′￼
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Interpretation: one canonical 

trace for every n



• Quotients, semantically. 

• Quotient expressions. 

• Automata. 

• Verifying concurrent objects. 

• Automated generation.

Challenges & Contributions
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(advancing the tail)
• Quotient:

‣ Proof organized like authors’ arguments
‣ Automaton shows when layers are 

enabled.
‣ Linearization points are explicit in the 

quotient: one per transition.
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Harris et al. RDCSS
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Treiber’s Stack

Summary: Stacks
• One ADT (Treiber) used as a submodule.
• Linearization points for two operations at 

one CAS operation (elimination)
• Quotient:

‣ Proof organized like authors’ arguments
‣ Linearization points explicit.
‣ Captures “active” versus “passive” 

concepts (in the automaton layers).
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• Linearizability: Depend on the future! Not fixed.


• An array of slots for items, with a shared variable back 

• enq atomically reads and increments back and then later stores 
a value at that location.


• deq repeatedly scans the array looking for the first non-empty 
slot in a doubly-nested loop.


• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*
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Summary: Herlihy-Wing Queue
• Future-dependent linearization points
• Linearization points cannot be associated 

with fixed statements.
• Quotient:

‣ Proof organized like authors’ arguments
‣ Quotient expressed through regular 

expressions.
‣ Linearization points become fixed in 

the quotient expression.



Generating Quotient Automata

• MSQ and Treiber Stack have a certain structure   

• Enumerate the “local paths” and the “write paths” 

• Compute automaton ADT states: boolean combinations of 
weakest preconditions)


• Compute automaton edges: whenever  implies precondition 
of a write path, compute every  and each local path that is 
possible due to the write path. Create layer edge . 

q
q′￼

q λ q′￼



Generating Quotient Automata

• Implemented in CIL, using Ultimate Automizer 

• Automatically generated automata for a few examples:



• Owicki and Gries [1976]

• Rely/Guarantee [Jones 1983]

• Concurrent Separation Logic [Bronat et al. 2005; Brookes 

2004; O’Hearn 2004; Parkinson et al. 2007]

• Views [Dinsdale-Young et al. 2013], TaDa [da Rocha Pinto et 

al. 2014] 

• Numerous other works [Dragoi et al. 2013; Jung et al. 2018, 

2020; Krishna et al. 2018; Ley-Wild and Nanevski 2013; Nanevski 
et al. 2019; Raad et al. 2015; Sergey et al. 2015; Turon et al. 
2013; Vafeiadis 2008, 2009]


• Reductions [Lipton 1975, Elmas et al 2009], Civl [Hawblitzel et 
al. 2015; Kragl and Qadeer 2018; Kragel et al. 2018].


• Many others …

Related Works on Linearizability & Reduction



Conclusion
• Working with representative 

interleavings (the quotient) is 
easier than working with all 
interleavings. 

• Quotient can be expressed by 
simple context-free expressions 

• Applies to a variety of objects 
(MSQ, SLS, HWQ, Treiber, Elim) 

• Can be automated for some; 
open questions…



Thank you!


