Scenario-Based Proofs
for Concurrent Objects

/ - _ |
g > 2 .
| . Sal

Constantin Enea Eric Koskinen

LIX - CNRS - Ecole Polytechnique Stevens Institute of Technology
France United States

Proceedings of the ACM on Programming Languages (OOPSLA)
October 24, 2024.

4 STEVENS INSTITUTE o f TECHNOLOGY

Concurrent Objects

OVERVIEW | .e<.ci== CLASS USE TREE DEPRECATED INDEX HELP

PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Package java.util.concurrent

Utility classes commonly useful in concurrent programming.

See: Description

Interface Summary
Interface

BlockingDeque<E>

BlockingQueue<E>

Callable<V>

CompletableFuture.AsynchronousCompletionTask

CompletionService<V>

CompletionStage<T>

ALL CLASSES

Description

A Deque that af
that wait for th
retrieving an e
available in thg

A Queue that aq
for the queue 1
element, and W
queue when st

A task that ret:

A marker inter
produced by a

A service that
asynchronous f{
of completed ti

A stage of a po
performs an ag

CompletionSta|

PRODUCTS SUPPORT SOLUTIONS MORE +

intel 2

Developers v Tools v oneAPI| v Components v Intel® oneAPI Threading Building Blocks 1

Intel® one API| Threading Building Blocks Developer

Guide and API| Reference

View More v

Q. Search this document

Document Table of Contents >

concurrent_hash_map

concurrent_hash_map

A concurrent_hash_map<Key, T, HashCompare >is a hash tal
accesses. The table is a map from a key to a type T. The traits type H3
hash a key and how to compare two keys.

The following example builds a concurrent_hash_map where the K
corresponding data is the number of times each string occurs in the 3

Module Saturn

Domain-safe data structures for Multicore OCaml

Data structures

module Queue

module Stack

Bad SATURN: a library of verified concurrent data structures
| for OCAML 5
moc
| Clément Allain (INRIA)
Vesa Karvonen (Tarides)
moc Carine Morel (Tarides)
August 1, 2024

moc

A mul! Abstract

. We present SATURN, a new OCAML 5 library available on opam. SATURN offers a col-
g lection of efficient concurrent data structures: stack, queue, skiplist, hash table, work-
| stealing deque, etc. It is well tested, benchmarked and in part formally verified.

2 Motivation

Sharing data between multiple threads or cores is a well-known problem. A naive ap-
proach is to take a sequential data structure and protect it with a lock. However, this
approach is often inefficient in terms of performance, as locks introduce significant con-
tention. Additionally, it may not be a sound solution as it can lead to liveness issues
such as deadlock, starvation, and priority inversion.

Y Y Y B y Y &~ 0« Y 4 g4+ D L P D o S . S S

. .

Concurrent Objects

OVERVIEW ||7-®<\c/4 CLASS USE TREE DEPRECATED INDEX HELP Tal¢=\ll PRODUCTS SUPPORT SOLUTIONS MORE + Q Peoasi Q) searc Module Saturn

PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES ALL CLASSES Developers v Tools v oneAPI v Components v Intel® oneAPI Threading Building Blocks v ' concurrent_hash_map Domain-safe data structures for Multicore OCaml

Package java.util.concurrent
g9¢) Intel® one API| Threading Building Blocks Developer
Utility classes commonly useful in concurrent programming. EuidarE AR Betarerae

Data structures

See: Description View More v module Queue =

4 STEVENS INSTITUTE of TECHNOLOGY

Canonical Concurrent Objects

o~ - Maged Michael and Michael L. Scott. Simple, fast, and practical non-blocking
@\III\ Michael/Scott Queue J and blocking concurrent queue algorithms. PODC 1996.

@\ I\ sts aueve
[_\@_ =2 Harris et al. RDCSS

g\"l\‘ Herlihy/Wing Queue

4 STEVENS INSTITUTE of TECHNOLOGY

William Scherer lll, Doug Lea, and Michael L. Scott. "Scalable synchronous
queues.”" PPoPP 2006.

R. K. Treiber. Systems programming: Coping with parallelism. Technical Report

- 3
Treiber’s Stack RJ 5118, IBM Almaden Research Center, 1986.

algorithm. SPAA 2004.

Timothy L. Harris, Keir Fraser, and lan A. Pratt. A Practical Multi-word
Compare-and-Swap Operation. DISC 2002.

Maurice Herliny and Jeannette M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on Programing

Hendler et al. Elim. Stack j Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack
j Languages and Systems 1990.

Canonical Concurrent Objects

Even Better DCAS-Based Concurrent Deques

David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite,
Paul A. Martin, Nir N. Shavit, and Guy L. Steele Jr.

Sun Microsystems Laboratories, 1 Network Drive, Burlington, MA 01803 USA

Abstract. The computer industry is examining the use of strong syn-
chronization operations such as double compare-and-swap (DCAS) as a
means of supporting non-blocking synchronization on tomorrow’s mul-
tiprocessor machines. However, before such a primitive will be incorpo-
rated into hardware design, its utility needs to be proven by developing
a body of effective non-blocking data structures using DCAS.

In a previous paper, we presented two linearizable non-blocking imple-
mentations of concurrent deques (double-ended queues) using the DCAS
operation. These improved on previous algorithms by nearly always al-
lowing unimpeded concurrent access to both ends of the deque while
correctly handling the difficult boundary cases when the deque is empty
or full. A remaining open question was whether, using DCAS, one can
design a non-blocking implementation of concurrent deques that allows
dynamic memory allocation but also uses only a single DCAS per push
or pop in the best case.

This paper answers that question in the affirmative. We present a new
non-blocking implementation of concurrent deques using the DCAS op-
eration. This algorithm provides the benefits of our previous techniques
while overcoming drawbacks. Like our previous approaches, this imple-
mentation relies on automatic storage reclamation to ensure that a stor-
age node is not reclaimed and reused until it can be proved that the
* STEVEN node is not reachable from any thread of control. This algorithm uses
a linked-list representation with dynamic node allocation and therefore
does not impose a fixed maximum capacity on the deque. It does not

nnnnnnnn 4']’\1'\ R Tearlal l\‘p PaY “n“r\v‘r\ 1\:"'” ;“ V\r\:“"'r\wn T“ +l‘\r\ 1\1‘\"\"‘ Y Tarlal /Y\I\ :V\"I\V“"‘l‘\“

Canonical Concurrent Objects

4 STEVEN

Even Better DCAS-Based Concurrent L]

Sun Microsystems Laboratories, 1 Network Drive, Burlington, MA 0180

David L. Detlefs, Christine H. Flood, Alexander T. Garthv
Paul A. Martin, Nir N. Shavit, and Guy L. Steele Jr.

Abstract. The computer industry is examining the use of strong syn-
chronization operations such as double compare-and-swap (DCAS) as a
means of supporting non-blocking synchronization on tomorrow’s mul-
tiprocessor machines. However, before such a primitive will be incorpo-
rated into hardware design, its utility needs to be proven by developing
a body of effective non-blocking data structures using DCAS.

In a previous paper, we presented two linearizable non-blocking imple-
mentations of concurrent deques (double-ended queues) using the DCAS
operation. These improved on previous algorithms by nearly always al-
lowing unimpeded concurrent access to both ends of the deque while
correctly handling the difficult boundary cases when the deque is empty
or full. A remaining open question was whether, using DCAS, one can
design a non-blocking implementation of concurrent deques that allows
dynamic memory allocation but also uses only a single DCAS per push
or pop in the best case.

This paper answers that question in the affirmative. We present a new
non-blocking implementation of concurrent deques using the DCAS op-
eration. This algorithm provides the benefits of our previous techniques
while overcoming drawbacks. Like our previous approaches, this imple-
mentation relies on automatic storage reclamation to ensure that a stor-
age node is not reclaimed and reused until it can be proved that the
node is not reachable from any thread of control. This algorithm uses
a linked-list representation with dynamic node allocation and therefore
does not impose a fixed maximum capacity on the deque. It does not

DCAS is not a Silver Bullet for Nonblocking Algorithm
Design

Simon Doherty*1 David L. Detlefs!

Lindsay Groves* Christine H. Flood!

Victor Luchangcot Paul A. Martint ~ Mark Moir? Nir Shavit® Guy L. Steele Jr.!

YWictoria University of Wellington, PO Boxz 600, Wellington, New Zealand
TSun Microsystems Laboratories, 1 Network Drive, Burlington, Massachusetts, USA

ABSTRACT

Despite years of research, the design of efficient nonblocking
algorithms remains difficult. A key reason is that current
shared-memory multiprocessor architectures support only
single-location synchronisation primitives such as compare-
and-swap (CAS) and load-linked/store-conditional (LL/SC).
Recently researchers have investigated the utility of double-

- e A I ”n N A N .

1. INTRODUCTION

The traditional approach to designing concurrent algo-
rithms and data structures is to use locks to protect data
from corruption by concurrent updates. The use of locks en-
ables algorithm designers to develop concurrent algorithms
based closely on their sequential counterparts. However,
several well-known problems are associated with the use of

) DR P T B s b DS P A, (R [T

Canonical Concurrent Objects

How do authors argue for correctness? (0

~
E\“I\‘ Michael/Scott Queue
W,

Enqueuer i

.-v

aar

X

l

1int enq(int v){ loop {

O OO0 3 O U1 v W N

10

node_t =*node=...;
node->val=v;
tail=Q.tail;
next=tail ->next;
if (Q.tail==tail) {

i1f (next==null) {

if (CAS(&tail ->next,

next,node))
ret 1;

11} } } }

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1int enq(int v){ loop {
node_t *node=...;
node->val=v;
tail=Q.tail;
next=tail ->next;
if (Q.tail==tail) {
i1f (next==null) {
if (CAS(&tail ->next,
next,node))

10 ret 1;

11} } } }

O OO0 3 O U1 v W N

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure. | 1 int enq(int v){ loop ¢

node_t *node=...;

node->val=v;

tail=Q.tail;

next=tail ->next;

if (Q.tail==tail) {

i1f (next==null) {
if (CAS(&tail->next,

next,node))

10 ret 1;

11} } } }

O O ~J O U1 o W I

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure. | 1 int enq(int v){ loop ¢

node_t *node=...;

node ->val=v;

tail=Q.tail;

next=tail ->next;

if (Q.tail==tail) {

i1f (next==null) {
if (CAS(&tail->next,

next,node))

10 ret 1;

11} } } }

2. There Is a distinguished thread, let’s call tenq.

O O ~J O U1 o W I

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure. | 1 int enq(int v){ loop ¢

node_t *node=...;

node ->val=v;

tail=Q.tail;

next=tail ->next;

if (Q.tail==tail) {

i1f (next==null) {

if (CAS(&tail->next,

next,node))

10 ret 1;

11} } } }

2. There Is a distinguished thread, let’s call tenq.

3. Tenq reads the tail and the tail’s next pointer.

O O ~J O U1 o W I

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts

to append the new node with CAS. (A CAS is required because other threads may be trying the

same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure.

2. There Is a distinguished thread, let’s call tenq.
3. Tenq reads the tail and the tail’s next pointer.

4. tenqg finds that tail’s next is null.

1int enq(int v){ loop {

0O ~J O Ul v W DN

9
10

node_t *node=...;

node ->val=v;

tail=Q.tail;

next=tail ->next;

if (Q.tail==tail) {

i1f (next==null) {

if (CAS(&tail->next,
next,node))
ret 1;

11} } } }

~
E\I"\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts

to append the new node with CAS. (A CAS is required because other threads may be trying the

same thing.) [Assume that]| the CAS succeeds.

Unboundedly many threads are reading the data structure.

. There Is a distinguished thread, let’s call zeng.

1.
2
3. Tenq reads the tail and the tail’s next pointer.
4. tenq finds that tail’s next is null.

5

. Tenq atomically updates tail’'s next to point to its new node.

1int enq(int v){ loop {

0O ~J O Ul v W DN

9
10

node_t *node=...;

node ->val=v;

tail=Q.tail;

next=tail ->next;

if (Q.tail==tail) {

i1f (next==null) {

if (CAS(&tail->next,
next,node))
ret 1;

11} } } }

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the

same thing.) [Assume that]| the CAS succeeds.

Unboundedly many threads are reading the data structure.

. There Is a distinguished thread, let’s call zeng.

. Tenq reads the tail and the tail’s next pointer.

1.

2

3

4. tenq finds that tail’s next is null.

5. Tenq atomically updates tail’s next to point to its new node.
6

. The other (unboundedly many) threads fail their CASes on
tail’'s next and restart.

1int enq(int v){ loop {

0O ~J O Ul v W DN

9
10

node_t *node=...;

node ->val=v;

tail=Q.tail;

next=tail ->next;

if (Q.tail==tail) {

i1f (next==null) {

if (CAS(&tail->next,
next ,node))
ret 1;

11} } } }

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

1. Unboundedly many threads are reading the data structure.

2. There Is a distinguished thread, let’s call tenq.

3. Tenq reads the tail and the tail’s next pointer.

" Quotient Expression
&y)"
- (¢ - cas()/false < £,

.
1ext to point to its new node.

) threads fail their CASes on

_

1int eng(int v){ loop {

0O ~J O Ul v W DN

9
10

node_t *node=...;

node->val=v;

tail=Q.tail;

next=tail ->next;

if (Q.tail==tail) {

i1f (next==null) {

if (CAS(&tail ->next,
next,node))
ret 1;

11} } } }

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

t1: 5 ... read Q.tail->next cas(Q.tail->next)
e ———>
te: ¢, ... read Q.tail->next ol
EEE———_—_—_—_—_—_—_—_— R R
t3: Z, ... read Q.tail->next —
————————————————————————-
" Quotient Expression R]]]
(L) Canonical interpretation for 3 threads.
5l

B (¢4 - cas()/false < £,)"

J

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

t1: 5 ... read Q.tail->next cas(Q.tail->next)
—- ----- ﬁ
te: ¢, ... read Q.tail->next cas fails
— -- ﬁ
ta: Z, ... read Q.tail->next cas fails
— -- ﬁ
" Quotient Expression A

N Canonical interpretation for 3 threads.
(FRELY

B (¢4 - cas()/false < £,)"

J

~
E\I"\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

£, ... read Q.tail->next cas(Q.tail->next)
—_— >

N~ ﬁ
te: ¢, ... read Q.tail->next cas fails
—_— > 0,7 22525ttt E—
ta: Z, ... read Q.tail->next cas fails
e —
" Quotient Expression R]]]
(L) Canonical interpretation for 3 threads.
A

B (¢4 - cas()/false < £,)"

J

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

£, ... read Q.tail->next cas(Q.tail->next)
—_— >

N~ —> : O F
te: ¢, ... read Q.tail->next 1 cas fails
—— e R A L L LR L LI ;- ——p
t3: Z, ... read Q.tail->next cas fails
iR L R O L R LR PP L P EEEEEEPPEEEEEREEEREED —_—
" Quotient Expression R]]]
(L) Canonical interpretation for 3 threads.
A

B (¢4 - cas()/false < £,)"

J

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

cas(Q.tail->next)
..... —>

... read Q.tail->next

to: £, ... read Q.tail->next { cas fails
e = = = = == = 5 % SRR LR LR e T S e

L3: cas fails

" Quotient Expression
&y)"
- (¢ - cas()/false < £,

" Canonical interpretation for 3 threads.

J

~
E\“I\‘ Michael/Scott Queue
W,

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that]| the CAS succeeds.

cas(Q.tail->next)

... read Q.tail->next
—ee - - - - - - —

cas fails

cas fails

" Quotient Expression
&y)"
- (¢ - cas()/false < £,

" Canonical interpretation for 3 threads.

J

,\III\‘ Michael/Scott Queue

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify
that node is indeed last, it checks whether that node has a successor. If so, the thread attempts
to append the new node with CAS. (A CAS is required because other threads may be trying the
same thing.) [Assume that] the CAS succeeds.

cas(Q.tail->next)

5 ... read Q.tail->next

cas fails

cas fails

... read Q.tail->next

" Canonical interpretation for 3 threads.

.\“I\‘ Michael/Scott Queue

.\I"\‘ Michael/Scott Queue

.\I“\" Michael/Scott Queue

-+-+-

.\“I\‘ Michael/Scott Queue

e Concurrent object proof methodology based on
representative interleavings.

e Concurrent object proof methodology based on
representative interleavings.

® Formal version of concurrent object authors’ “scenarios.”

e Concurrent object proof methodology based on
representative interleavings.

® Formal version of concurrent object authors’ “scenarios.”

e Technique: For an object, find a core set of such
representatives—(a “quotient”) described by a quotient
expression (as seen on previous slide).

e Concurrent object proof methodology based on
representative interleavings.

® Formal version of concurrent object authors’ “scenarios.”

e Technique: For an object, find a core set of such
representatives—(a “quotient”) described by a quotient
expression (as seen on previous slide).

® Each representative interleaving equivalent to infinitely
many others.

e Concurrent object proof methodology based on
representative interleavings.

® Formal version of concurrent object authors’ “scenarios.”

e Technique: For an object, find a core set of such
representatives—(a “quotient”) described by a quotient
expression (as seen on previous slide).

® Each representative interleaving equivalent to infinitely
many others.

e Benefit: Easier to work with quotient, e.g., linearizability.

Defining an Object’s Quotient

* Trace equivalence relation up to commutativity
" Onetracet € | O] of object O

|
|

| l1: L”Z ... read Q.tail->next cas(Q.tail->next) \
[] w L e ——w = = = = |
Single-swap. -
_ t: ¢, ... read Q.tail->next \
(T =1 1T /) ity
_ ta: 5 ... read Q.tail->next
EE——————————— e e T T

4 STEVENS INSTITUTE of TECHNOLOGY

Defining an Object’s Quotient

 Trace equivalence relation up to commutativity

— S e _ —

/ .
- One trace 7 € [|O]] of object O
! l1: L”Z ... read Q.tail->next cas(Q.tail->next) \
[| o LTI e —w = = = [
Single-swap: -
_ to: ¢, ... read Xail->next \
(T —1 T/) - > T ''
9 t3 s - tail->next

4 STEVENS INSTITUTE of TECHNOLOGY

Defining an Object’s Quotient

* Trace equivalence relation up to commutativity
" Onetracet € | O] of object O

5 t1: 5 ... read Q.tail->next cas(Q.tail->next) \
- , —_— - —/
Single-swap. 3

_ to: £, ... read Q.tail->next \
=, 7) fyveadQuaibnest o

K ts: ¢, ... read Q.tail->next
ittt

— — — = = —

4 STEVENS INSTITUTE of TECHNOLOGY

Defining an Object’s Quotient

* Trace equivalence relation up to commutativity
" Onetracer € | O] of object O

| l1: z/”z ... read Q.tail->next cas(Q.tail->next) \
. St e Pl e —_—
Single-swap: - 3

_ to: £, ... read Q.tail->next \
=, 7) fyveadQuaibnest o

K ts: ¢, ... read Q.tail->next
ittt

———— ——— = = e —— = ———— ————— — — ——— ———— —

Definition: Trace equivalence up to commutativity denoted
T = 7’ is the least reflexive-transitive relation that includes
all such “single-swaps” 7 =, 7.

4 STEVENS INSTITUTE of TECHNOLOGY

Defining an Object’s Quotient

Defining an Object’s Quotient

Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces { O) C [[O]] such that:

Defining an Object’s Quotient

Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces { O) C [[O]] such that:

e Completeness:
Vr e [O] .37, 7" . relabel(r,7) AT =" A" € (O)

Defining an Object’s Quotient

Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces { O) C [[O]] such that:

e Completeness:
Vr e [O] .37, 7" . relabel(r,7) AT =" A" € (O)

o Optimality:
Vi,7/ € (O) . ~(1 = 7)

Defining an Object’s Quotient

Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces (LOJ) C [[O]] such that:

» Completeness:
V1 E [[0]] HT T relabEZ(T) AT T,//\ e (I_O_I)

. Optimality

Vi,7/ € (O) .~ (t = 7’

" Quotient Expression "
()"

- (£5-+-Cy - cas(Q.tail->next)/true)
B (¢4 - cas()/false < £,)"

J

Defining an Object’s Quotient

Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces (LOJ) C [[O]] such that:

» Completeness:
Vr e [O].3r,7". relabel(r,) AT =, T"ANT"€E (O)

. Optimality /
Vi,77 € (O) .~ (r =47)

" Quotient Expression A Py
£y l)V o Context-free grammar
2"l ' B) n)
. (¢,-++ ¢4 - cas(Q.tail->next)/true) expr = w | wy - expr- w, | expr

- (¢3- cas()/false < £) | expr + expr | expr - expr

Defining an Object’s Quotient

Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces (LOJ) C [[O]] such that:

» Completeness: "
Vr € [O].d7,7". relabel(z, ¢) AT = 7" ANT" € (O)

. Optimality /
Vi,77 € (O) .~ (r = 7) /
" Quotient Expression A

e Context-free rammar _
(£ E)" g

. (¢,+++ ¢4 - cas(Q.tail->next)/true) expr = @ | wi - expr- wy | expr’

- (¢3- cas()/false < £) | expr + expr | expr - expr

Challenges & Contributions

* Quotients, semantically.

* Quotient expressions.

—- = = — —e =

A

)
0

N\

* Verifying concurrent objects.

 Automated generation.

4 STEVENS INSTITUTE of TECHNOLOGY

Scenario-Based Proofs for Concurrent Objects

CONSTANTIN ENEA, LIX - CNRS - Ecole Polytechnique, France
ERIC KOSKINEN, Stevens Institute of Technology, USA

Concurrent objects form the foundation of many applications that exploit multicore architectures and their
importance has lead to informal correctness arguments, as well as formal proof systems. Correctness arguments
(as found in the distributed computing literature) give intuitive descriptions of a few canonical executions
or "scenarios” often each with only a few threads, yet it remains unknown as to whether these intuitive
arguments have a formal grounding and extend to arbitrary interleavings over unboundedly many threads.

We present a novel proof technique for concurrent objects, based around identifying a small set of scenarios
(representative, canonical interleavings), formalized as the commutativity quotient of a concurrent object.
We next give an expression language for defining abstractions of the quotient in the form of regular or
context-free languages that enable simple proofs of linearizability. These quotient expressions organize
unbounded interleavings into a form more amenable to reasoning and make explicit the relationship between
implementation-level contention/interference and ADT-level transitions.

We evaluate our work on numerous non-trivial concurrent objects from the literature (including the
Michael-Scott queue, Elimination stack, SLS reservation queue, RDCSS and Herlihy-Wing queue). We show that
quotients capture the diverse features/complexities of these algorithms, can be used even when linearization
points are not straight-forward, correspond to original authors’ correctness arguments, and provide some new
scenario-based arguments. Finally, we show that discovery of some object’s quotients reduces to two-thread
reasoning and give an implementation that can derive candidate quotients expressions from source code.

CCS Concepts: « Software and its engineering — Formal software verification; « Theory of computation
— Logic and verification; Program reasoning; « Computing methodologies — Concurrent algorithms.

Additional Key Words and Phrases: verification, linearizability, commutativity quotient, concurrent objects

ACM Reference Format:
Constantin Enea and Eric Koskinen. 2024. Scenario-Based Proofs for Concurrent Objects. Proc. ACM Program.
Lang. 8, OOPSLA1, Article 140 (April 2024), 30 pages. https://doi.org/10.1145/3649857

1 INTRODUCTION

Enqueue Enqueue

Succeed Layer Succeed Layer

qd1

Enqueue Enqueue
Succeed Layer Succeed Layer

Enqueue Succeed Layer
(enq:2-8)"
enq:2-8-cas(Q.tail->next)
(enq:8-2)"

E\“I\" Michael/Scott Queuej

'Duotient Automaton

Read-Only Layer 1
(deq:2-7-return)”

Dequeue Succeed
Layer

(adv:1-4-1)m
Y

a1

Advancer Succeed
Layer

Enqueue
Succeed Layer

Advancer Succeed
Layer

Dequeue Succeed
Layer

Yk

Advancer Succeed
Layer

Dequeue Succeed ||Read-Only Layer 2
Layer (@dv:1-4-1)»

aisthead |

Enqueue

Succeed Layer Advancer

Succeed Layer

A

Read-Only Layer 3
(enq:2-7- 2)

(deq:2-7-2)™

Read-Only Layer 4
(enq:2-7-2)"

Dequeue Advancer
Succeed Succeed
Layer Layer

Legend: Layer Definitions

Dequeue Succeed Layer
(deq:2-10)" (deq:2-5)™
deq:2-10-cas(Q.head)/true
(deq:5-2)™ (deq:10-2)"

Advancer Succeed Layer
(enq:2-6)" adv:2-5)™
adv:2-5-cas(Q->tail)/true
(adv:5-2)" (enq:6-2)"

Enqueue Succeed Layer
(enqg:2-8)"
enq:2-8-cas(Q.tail->next)
(enq:8-2)»

~
E\“I\‘ Michael/Scott Queue
W,

E.\“I\‘ Michael/Scott Queue}

Summary: Michael-Scott Queue

E.\“I\‘ Michael/Scott Queue}

Summary: Michael-Scott Queue
 Many CAS operations

E.\I“\‘ Michael/Scott Queue}

Summary: Michael-Scott Queue
 Many CAS operations

* Linearization points through helping
(advancing the tail)

E.\I“\‘ Michael/Scott Queue}

Summary: Michael-Scott Queue
 Many CAS operations

* Linearization points through helping
(advancing the tail)

 Quotient:

E.\I“\‘ Michael/Scott Queue}

Summary: Michael-Scott Queue
 Many CAS operations

* Linearization points through helping
(advancing the tail)

e Quotient:
> Proof organized like authors’ arguments

E.\I“\‘ Michael/Scott Queue}

Summary: Michael-Scott Queue
 Many CAS operations

* Linearization points through helping
(advancing the tail)

e Quotient:
> Proof organized like authors’ arguments

> Automaton shows when layers are
enabled.

E.\I“\‘ Michael/Scott Queue}

Summary: Michael-Scott Queue
 Many CAS operations

* Linearization points through helping
(advancing the tail)

 Quotient:

> Proof organized like authors’ arguments

> Automaton shows when layers are
enabled.

> Linearization points are explicit in the
quotient: one per transition.

@\l“ > SLS Queue

,\"l\‘ SLS Queue

When the queue is a list of reservations
(deq appends resv at tail, enq removes resv at head)

Dapp

When the queue is a list of items
(eng appends items at tail, deq removes items at head)

Eapp

Tail advance (TA)
@A vith (3 fail paths)x

with (3 fail paths)x

Enqg append item node (Eapp)

!mwth (1 fail path)x

(HR)
with (9 fail paths)sx

with (9 fail paths)*
with (9 fail paths)*

Head rea

Deq append reservation (Dapp)

!mwth (1 fail path)x*
Enq swap res for item (Eswap)
!:w,! with (2 fail paths)x

Deq swap item for null (Dswap)
!:w’! with (2 fail paths)x

[

@\l“\‘ SLS Queue

J

When the queue is a list of reservations
(deq appends resv at tail, enq removes resv at head)

Dapp

(eng appends items at tail, deq removes items at head)

[Regarding enqueue,]| the reservation linearization point for this code path occurs at line [...]
when we successfully insert our offering into the queue — Scherer 111 et al. [2006]

When the queue is a list of items

Eapp

with (3 fail paths)x

with (3 fail paths)x

Enqg append item node (Eapp)

!mwth (1 fail path)sx

(HR)
with (9 fail paths)sx

with (9 fail paths)x
with (9 fail paths)*

Head rea

Deq append reservation (Dapp)

!m!with (1 fail path)x*
Enq swap res for item (Eswap)
!lw,! with (2 fail paths)x*

Deq swap item for null (Dswap)
!:ﬁ,! with (2 fail paths)x

@\l“ > SLS Queue

@\l“ > SLS Queue

J

Summary: SLS Queue

@\l“ “ SLS Queue J

Summary: SLS Queue
* Operations involve multiple CAS steps

[
E\“l\‘ SLS Queue J

Summary: SLS Queue
* Operations involve multiple CAS steps
* Linearization points through helping

[
E\“l\‘ SLS Queue J

Summary: SLS Queue

* Operations involve multiple CAS steps
* Linearization points through helping
 Operations are synchronous.

[
E\“l\‘ SLS Queue J

Summary: SLS Queue

* Operations involve multiple CAS steps
* Linearization points through helping
 Operations are synchronous.

e Quotient:

[

E\l“\‘ SLS Queue

Summary: SLS Queue
* Operations involve multiple CAS steps
* Linearization points through helping
 Operations are synchronous.
e Quotient:
> Proof organized like authors’ arguments

[

E\l“\‘ SLS Queue

Summary: SLS Queue

* Operations involve multiple CAS steps
* Linearization points through helping
 Operations are synchronous.
e Quotient:
> Proof organized like authors’ arguments
> Automaton shows enabled layers.

[

E\l“\‘ SLS Queue

Summary: SLS Queue

* Operations involve multiple CAS steps
* Linearization points through helping
 Operations are synchronous.
e Quotient:
> Proof organized like authors’ arguments
> Automaton shows enabled layers.
> Linearization points are explicit.

v
[é Treiber’s Stack J
- J

) ¥
[Hendler et al. Elim. Stack

Treiber’s Stack

top.

(eSS

.X:3).XZ "xl —1

-~ A
— Treiber’s Stack
E—
I W,
-~ h
m— Hendler et al. Elim. Stack
—
I .
Treiber’s Stack Quotient for Treiber’s Stack
RO Layer 1 ||Layer2 Layer 2
to p (pop path pop: cas(top)/true (See definition of Layer 2
ret emp)* with (push/pop fail path)* the left)
4

Layer 3 Layer 4
push: cas(top)/true push: cas(top)/true

with (push fail path)* with (push/pop fail path)*

Treiber’s Stack

top

(eSS

P

Treiber’s Stack

~

[
[

>

Hendler et al. Elim. Stack

I

: x3 > xz —
Y
X4
Elimination Stack extension [Hendler et al. 2004]
location[tid]
(Push, (Pop,
tid2, 42) tid4,)

collision[]

t1d4

J
)
J
Quotient for Treiber’s Stack
RO Layer 1 ||Layer 2 Layer 2
(pop path pop: cas(top)/true (See definition of Layer 2
ret emp)* with (push/pop fail path)* the left)
top=null topznull
Layer 3 Layer 4

push: cas(top)/true
with (push fail path)*

push: cas(top)/true
with (push/pop fail path)*

Treiber’s Stack

top

P

Treiber’s Stack

~

[
[

>

Hendler et al. Elim. Stack

J
N

J

(€A
: X3 1 X2 " X
X4
Elimination Stack extension [Hendler et al. 2004]
location[tid]
(Push, (Pop,
tid2, 42) tid4,)

collision[]

tid4

[A] colliding operation op is active if it executes a successful CAS in lines C2 or C7. We say that
a colliding operation is passive if op fails in the CAS of line S10 or S19. [underlines added] —

Quotient for Treiber’s Stack

RO Layer 1

(pop path
ret emp)*

Layer 2
pop: cas(top)/true

with (push/pop fail path)*

Layer 2
(See definition of Layer 2

top=null top

the left)
znull z

Layer 3
push: cas(top)/true

with (push fail path)*

Layer 4
push: cas(top)/true

with (push/pop fail path)*

Hendler et al. [2004]

P

Treiber’s Stack

~

>

[
[

Hendler et al. Elim. Stack

Treiber’s Stack

> xz P‘ xl]
Elimination Stack extension [Hendler et al. 2004]
location[tid]
(Push, (Pop,
tid2, 42) tid4,)

collision[]

tid4

J
)
J
Quotient for Treiber’s Stack
RO Layer 1 ||Layer 2 Layer 2
(pop path pop: cas(top)/true (See definition of Layer 2
ret emp)* with (push/pop fail path)* the left)
top=null topznull
Layer 3 Layer 4

push: cas(top)/true
with (push fail path)*

push: cas(top)/true
with (push/pop fail path)*

Quotient for the Elimination Stack

Treiber’s
stack

(push/pop:3-4)*

pop/push:8-22 return val
+ pop/push:8-10-22 return val
+ pop/push:8-17 return val

‘ Publlsh ‘j ‘

Publish
descriptors

[A] colliding operation op is active if it executes a successful CAS in lines C2 or C7. We sc say that
a colliding operation is passive if op fails in the CAS of line S10 or S19. [underlines added] — [mypic])true)”

Hendler et al. [2004]

push/pop 6)”

[m[pos])/true)

)

Treiber’s Stack

et
/

£
|

Hendler et al. Elim. Stac

K

J
J

v

[é Treiber’s Stack }
v

[é Hendler et al. Elim. Stack}

Summary: Stacks

— Treiber’s Stack

= J
J

m— Hendler et al. Elim. Stack

Summary: Stacks
* One ADT (Treiber) used as a submodule.

— Treiber’s Stack

= J
J

m— Hendler et al. Elim. Stack

Summary: Stacks

* One ADT (Treiber) used as a submodule.

* Linearization points for two operations at
one CAS operation (elimination)

== Treiber’s Stack

= J
J

m— Hendler et al. Elim. Stack

Summary: Stacks

* One ADT (Treiber) used as a submodule.

* Linearization points for two operations at
one CAS operation (elimination)

e Quotient:

== Treiber’s Stack

= J
J

m— Hendler et al. Elim. Stack

Summary: Stacks

* One ADT (Treiber) used as a submodule.

* Linearization points for two operations at
one CAS operation (elimination)

e Quotient:
> Proof organized like authors’ arguments

— Treiber’s Stack

= J
J

m— Hendler et al. Elim. Stack

Summary: Stacks

* One ADT (Treiber) used as a submodule.

* Linearization points for two operations at
one CAS operation (elimination)

e Quotient:
> Proof organized like authors’ arguments
> Linearization points explicit.

— Treiber’s Stack

= J
J

m— Hendler et al. Elim. Stack

Summary: Stacks

* One ADT (Treiber) used as a submodule.

* Linearization points for two operations at
one CAS operation (elimination)

e Quotient:
> Proof organized like authors’ arguments
> Linearization points explicit.

> Captures “active” versus “passive”
concepts (in the automaton layers).

-
@\I“\‘ Herlihy/Wing Queue
.

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

* deqg repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

-
@\“I\‘ Herlihy/Wing Queue
.

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

e deq repeatedly scans the a
slot in a doubly-nested loop.

r the first non-empty

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

-
@\“I\" Herlihy/Wing Queue
W,

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

e deq repeatedly scans the a
slot in a doubly-nested loop.

empty

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

-
@\“I\‘ Herlihy/Wing Queue
W,

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

e deq repeatedly scans the a
slot in a doubly-nested loop.

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

-
@\I“\" Herlihy/Wing Queue
W,

* Linearizability: Depend on the future! Not fixed.

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

» deq repeate
slot in a doubly-nested [oop.

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

-
@\I“\" Herlihy/Wing Queue
W,

Engqg execution occurs in two steps, which may be interleaved with steps of other concurrent

operations: an array slot is reserved by atomically incrementing back, and the new item is stored
in items. — Sec 4.1 of Herlihy and Wing [1990]

* An array of slots for items, with a shared variable back

* eng atomically reads and increments back and then later stores
a value at that location.

» deq repeate
slot in a doubly-nested [oop.

» Quotient expression: (deqgF™ - (engl)™ - engW* - deqT*)*

-
@\I“\‘ Herlihy/Wing Queue
.

-
@\I“\‘ Herlihy/Wing Queue
.

Summary: Herlihy-Wing Queue

-
@\"l\‘ Herlihy/Wing Queue
W,

Summary: Herlihy-Wing Queue
* Future-dependent linearization points

-
@\"l\‘ Herlihy/Wing Queue
W,

Summary: Herlihy-Wing Queue
* Future-dependent linearization points

* Linearization points cannot be associated
with fixed statements.

-
@\"l\‘ Herlihy/Wing Queue
W,

Summary: Herlihy-Wing Queue
* Future-dependent linearization points

* Linearization points cannot be associated
with fixed statements.

e Quotient:

-
@\"l\‘ Herlihy/Wing Queue
W,

Summary: Herlihy-Wing Queue
* Future-dependent linearization points

* Linearization points cannot be associated
with fixed statements.

e Quotient:
> Proof organized like authors’ arguments

-
@\"l\‘ Herlihy/Wing Queue
W,

Summary: Herlihy-Wing Queue
* Future-dependent linearization points

* Linearization points cannot be associated
with fixed statements.

e Quotient:
> Proof organized like authors’ arguments

> Quotient expressed through regular
expressions.

-
@\"l\‘ Herlihy/Wing Queue
W,

Summary: Herlihy-Wing Queue
* Future-dependent linearization points

* Linearization points cannot be associated
with fixed statements.

e Quotient:
> Proof organized like authors’ arguments

> Quotient expressed through regular
expressions.

> Linearization points become fixed in
the quotient expression.

Generating Quotient Automata

« MSQ and Treiber Stack have a certain structure
 Enumerate the “local paths” and the “write paths”

 Compute automaton ADT states: boolean combinations of
weakest preconditions)

 Compute automaton edges: whenever g implies precondition

of a write path, compute every g’ and each local path that is

possible due to the write path. Create layer edge ¢ i q'.

4 STEVENS INSTITUTE o0 f TECHNOLOGY

Generating Quotient Automata

* Implemented in CIL, using Ultimate Automizer

 Automatically generated automata for a few examples:

States # Paths | # Trans. # Layers Time # Solver
Example Q| #k #k,, |16 | | A(O) | (s) OQueries
evenodd. c 2 2 2 6 3 52.2 32
counter.c 2 3 2 6 5 67.8 36
descriptor.c 4 6 2 6 6 160.2 74
treiber.c 2 3 2 6 5 71.4 37
msqg.cC 4 9 3 17 7 441.6 314
listset.c 7 6 2 59 7 603.8 494

4 STEVENS INSTITUTE of TECHNOLOGY

al. 2014]

e Numerous other works [Dragoi et al. 2013; Jung et al. 2018,
2020; Krishna et al. 2018; Ley-Wild and Nanevski 2013; Nanevski
et al. 2019; Raad et al. 2015; Sergey et al. 2015; Turon et al.
2013; Vafeiadis 2008, 2009]

 Reductions [Lipton 1975, Elmas et al 2009], Civl [Hawblitzel et
al. 2015; Kragl and Qadeer 2018; Kragel et al. 2018].

 Many others ...

4 STEVENS INSTITUTE of TECHNOLOGY

Related Works on Linearizability & R

o Owicki and Gries [1976]
e Rely/Guarantee [Jones 1983]

e Concurrent Separation Logic [Bronat et al. 2005; Brookes
2004; O’Hearn 2004; Parkinson et al. 2007]

e Views [Dinsdale-Young et al. 2013], TaDa [da Rocha Pinto et

eduction

n queueX := #[GFunc

stance subG lockPool {X} : subG queuel ¥ - g
f. solve_inG. Qed. .
Section queue refinement. J)
Context ~{relocG X, queueG X}. .
Lemma refines load alt KE 1 t A :
(|={T,E}=> 3 v' q,
>(1 »{q} v') =*
>(1 »{gq} v' -x (REL fill K (of_val v') <<
-
Proof
In
iAp '
iMo ". iModIntr
iAp b.
Qed.
Tacti " := rel_apply 1l refines_load_alt.
efinition isNode ¢{n x ({nOut : loc) : iProp X := ¢{n »J SOMEV (x, #{nOut).
(* Length in dexed reachable)
ixpoint reachable 1 (n : nat) p 2
d x (¢nOu loc), | #
(match th
| o => = {
| s n' => (3 (¢p : loc), {nOut »O #!p * reachable 1 n' (p {m)
end).
inition reachable {n {m : iProp ¥ := 3 n, reachable 1 n {n {m.
ation "a ~r~> b" := (reachable a b) (at level 20, format "a -~r~> Db").
mm. chabl fl (loc) e #
oooooooooooo p". iExists 0. iExistsFrame. Qed
reachable pe b si (b)
/Persistent.
ct 1 (n) " duction n as [|n] "IH" 11 (a)
ruct "R" "# dInt by ists 0.
ruct : (?2?) "[#? U]". iDest t " as (?) "[#]
uc . h) as (n') "#HI iModIntr ()
Qed
Lemm chabl b habl b chable b habl

A verifier for concurrent programs

Conclusion

 Working with representative
interleavings (the quotient) is
easier than working with all
Interleavings.

* Quotient can be expressed by
simple context-free expressions

 Applies to a variety of objects
(MSQ, SLS, HWQ, Treiber, Elim)

« Can be automated for some;
open questions...

4 STEVENS INSTITUTE of TECHNOLOGY

Scenario-Based Proofs for Concurrent Objects

CONSTANTIN ENEA, LIX - CNRS - Ecole Polytechnique, France
ERIC KOSKINEN, Stevens Institute of Technology, USA

Concurrent objects form the foundation of many applications that exploit multicore architectures and their
importance has lead to informal correctness arguments, as well as formal proof systems. Correctness arguments
(as found in the distributed computing literature) give intuitive descriptions of a few canonical executions
or "scenarios” often each with only a few threads, yet it remains unknown as to whether these intuitive
arguments have a formal grounding and extend to arbitrary interleavings over unboundedly many threads.

We present a novel proof technique for concurrent objects, based around 1dentifying a small set of scenarios
(representative, canonical interleavings), formalized as the commutativity quotient of a concurrent object.
We next give an expression language for defining abstractions of the quotient in the form of regular or
context-free languages that enable simple proofs of linearizability. These quotient expressions organize
unbounded interleavings into a form more amenable to reasoning and make explicit the relationship between
implementation-level contention/interference and ADT-level transitions.

We evaluate our work on numerous non-trivial concurrent objects from the literature (including the
Michael-Scott queue, Elimination stack, SLS reservation queue, RDCSS and Herlihy-Wing queue). We show that
quotients capture the diverse features/complexities of these algorithms, can be used even when linearization
points are not straight-forward, correspond to original authors’ correctness arguments, and provide some new
scenarlo-based arguments. Finally, we show that discovery of some object’s quotients reduces to two-thread
reasoning and give an implementation that can derive candidate quotients expressions from source code.

CCS Concepts: « Software and its engineering — Formal software verification; « Theory of computation
— Logic and verification; Program reasoning; « Computing methodologies — Concurrent algorithms.

Additional Key Words and Phrases: verification, linearizability, commutativity quotient, concurrent objects

ACM Reference Format:
Constantin Enea and Eric Koskinen. 2024. Scenario-Based Proofs for Concurrent Objects. Proc. ACM Program.
Lang. 8, OOPSLA1, Article 140 (April 2024), 30 pages. https://doi.org/10.1145/3649857

1 INTRODUCTION

Thank you!

4 STEVENS INSTITUTE of TECHNOLOGY

