
Scenario-Based Proofs
for Concurrent Objects

Proceedings of the ACM on Programming Languages (OOPSLA)
October 24, 2024.

Constantin Enea
LIX - CNRS - École Polytechnique

France

Eric Koskinen
Stevens Institute of Technology

United States

Concurrent Objects

Concurrent Objects

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Canonical Concurrent Objects
Maged Michael and Michael L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. PODC 1996.

William Scherer III, Doug Lea, and Michael L. Scott. "Scalable synchronous
queues." PPoPP 2006.

R. K. Treiber. Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center, 1986.

Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack
algorithm. SPAA 2004.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A Practical Multi-word
Compare-and-Swap Operation. DISC 2002.

Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on Programing
Languages and Systems 1990.

Canonical Concurrent Objects

Canonical Concurrent Objects

Canonical Concurrent Objects

How do authors argue for correctness? 🤔

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

1. Unboundedly many threads are reading the data structure.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

5. 𝜏enq atomically updates tail’s next to point to its new node.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

5. 𝜏enq atomically updates tail’s next to point to its new node.

6. The other (unboundedly many) threads fail their CASes on
tail’s next and restart.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

1. Unboundedly many threads are reading the data structure.
2. There is a distinguished thread, let’s call 𝜏enq.

3. 𝜏enq reads the tail and the tail’s next pointer.

4. 𝜏enq finds that tail’s next is null.

5. 𝜏enq atomically updates tail’s next to point to its new node.

6. The other (unboundedly many) threads fail their CASes on
tail’s next and restart.

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

cas(Q.tail->next)

cas fails

cas fails

t2:

t3:

t1:

Canonical interpretation for 3 threads.

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

cas(Q.tail->next)

cas fails

cas fails

t2:

t3:

t1:

Canonical interpretation for 3 threads.

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

cas(Q.tail->next)

cas fails

cas fails

t2:

t3:

t1:

Canonical interpretation for 3 threads.

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

cas(Q.tail->next)

cas fails

cas fails

t2:

t3:

t1:

Canonical interpretation for 3 threads.

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

cas(Q.tail->next)

cas fails

cas fails

t2:

t3:

t1:

Canonical interpretation for 3 threads.

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

cas(Q.tail->next)

cas fails

cas fails

t2:

t3:

t1:

Canonical interpretation for 3 threads.

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2t3:

t2:

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

cas(Q.tail->next)

cas fails

cas fails

t2:

t3:

t1:

Canonical interpretation for 3 threads.

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2t3:

t2:

Trace equivalence up to commutativity/relabel

τ ≡⋈ τ′

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Enqueue Succeed Layer

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next))
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Enqueue Succeed Layer

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next))
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Dequeue Succeed Layer

(ℓD
2 ⋯ℓD

10)
N

⋅ (ℓD
2 ⋯ℓD

10 ⋅ cas(Q.head)/t)
⋅ (ℓD

8 ⋅ cas()/false ↩ ℓD
2)N

+

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Enqueue Succeed Layer

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next))
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Dequeue Succeed Layer

(ℓD
2 ⋯ℓD

10)
N

⋅ (ℓD
2 ⋯ℓD

10 ⋅ cas(Q.head)/t)
⋅ (ℓD

8 ⋅ cas()/false ↩ ℓD
2)N

+

Advancer Succeed Layer

(ℓA
2 ⋯ℓA

6)N

⋅ (ℓA
2 ⋯ℓA

6 ⋅ cas(Q.tail)/t
⋅ (ℓ8 ⋅ cas()/false ↩ ℓA

2)N
+

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Enqueue Succeed Layer

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next))
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Dequeue Succeed Layer

(ℓD
2 ⋯ℓD

10)
N

⋅ (ℓD
2 ⋯ℓD

10 ⋅ cas(Q.head)/t)
⋅ (ℓD

8 ⋅ cas()/false ↩ ℓD
2)N

+

Advancer Succeed Layer

(ℓA
2 ⋯ℓA

6)N

⋅ (ℓA
2 ⋯ℓA

6 ⋅ cas(Q.tail)/t
⋅ (ℓ8 ⋅ cas()/false ↩ ℓA

2)N
+()*

Idea

• Concurrent object proof methodology based on
representative interleavings.

Idea

• Concurrent object proof methodology based on
representative interleavings.

• Formal version of concurrent object authors’ “scenarios.”

Idea

• Concurrent object proof methodology based on
representative interleavings.

• Formal version of concurrent object authors’ “scenarios.”
• Technique: For an object, find a core set of such

representatives—(a “quotient”) described by a quotient
expression (as seen on previous slide).

Idea

• Concurrent object proof methodology based on
representative interleavings.

• Formal version of concurrent object authors’ “scenarios.”
• Technique: For an object, find a core set of such

representatives—(a “quotient”) described by a quotient
expression (as seen on previous slide).

• Each representative interleaving equivalent to infinitely
many others.

Idea

• Concurrent object proof methodology based on
representative interleavings.

• Formal version of concurrent object authors’ “scenarios.”
• Technique: For an object, find a core set of such

representatives—(a “quotient”) described by a quotient
expression (as seen on previous slide).

• Each representative interleaving equivalent to infinitely
many others.

• Benefit: Easier to work with quotient, e.g., linearizability.

Idea

One trace of object τ ∈ [[O]] O

Defining an Object’s Quotient
• Trace equivalence relation up to commutativity

t2:

t3:

t1:
Single-swap:

()τ ≡1 τ′

cas(Q.tail->next) … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

One trace of object τ ∈ [[O]] O

Defining an Object’s Quotient
• Trace equivalence relation up to commutativity

t2:

t3:

t1:
Single-swap:

()τ ≡1 τ′

cas(Q.tail->next) … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

One trace of object τ ∈ [[O]] O

Defining an Object’s Quotient
• Trace equivalence relation up to commutativity

t2:

t3:

t1:
Single-swap:

()τ ≡1 τ′

cas(Q.tail->next) … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

One trace of object τ ∈ [[O]] O

Defining an Object’s Quotient
• Trace equivalence relation up to commutativity

t2:

t3:

t1:
Single-swap:

()τ ≡1 τ′

Definition: Trace equivalence up to commutativity denoted
 is the least reflexive-transitive relation that includes

all such “single-swaps” .
τ ≡⋈ τ′

τ ≡1 τ′

cas(Q.tail->next) … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

 … read Q.tail->nextℓ2

Defining an Object’s Quotient

Defining an Object’s Quotient
Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]

Defining an Object’s Quotient
Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]
• Completeness:

∀τ ∈ [[O]] . ∃τ′ , τ′ ′ . relabel(τ, τ′) ∧ τ′ ≡⋈ τ′ ′ ∧ τ′ ′ ∈ ⟨⌊O⌋⟩

Defining an Object’s Quotient
Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]
• Completeness:

∀τ ∈ [[O]] . ∃τ′ , τ′ ′ . relabel(τ, τ′) ∧ τ′ ≡⋈ τ′ ′ ∧ τ′ ′ ∈ ⟨⌊O⌋⟩

• Optimality: 
∀τ, τ′ ∈ ⟨⌊O⌋⟩ . ¬(τ ≡⋈ τ′)

Defining an Object’s Quotient
Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]
• Completeness:

∀τ ∈ [[O]] . ∃τ′ , τ′ ′ . relabel(τ, τ′) ∧ τ′ ≡⋈ τ′ ′ ∧ τ′ ′ ∈ ⟨⌊O⌋⟩

• Optimality: 
∀τ, τ′ ∈ ⟨⌊O⌋⟩ . ¬(τ ≡⋈ τ′)

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Defining an Object’s Quotient
Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]
• Completeness:

∀τ ∈ [[O]] . ∃τ′ , τ′ ′ . relabel(τ, τ′) ∧ τ′ ≡⋈ τ′ ′ ∧ τ′ ′ ∈ ⟨⌊O⌋⟩

• Optimality: 
∀τ, τ′ ∈ ⟨⌊O⌋⟩ . ¬(τ ≡⋈ τ′)

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Context-free grammar

Defining an Object’s Quotient
Definition: Commutativity quotient of a concurrent object is
a (sub)set of the object’s traces such that:⟨⌊O⌋⟩ ⊂ [[O]]
• Completeness:

∀τ ∈ [[O]] . ∃τ′ , τ′ ′ . relabel(τ, τ′) ∧ τ′ ≡⋈ τ′ ′ ∧ τ′ ′ ∈ ⟨⌊O⌋⟩

• Optimality: 
∀τ, τ′ ∈ ⟨⌊O⌋⟩ . ¬(τ ≡⋈ τ′)

Quotient Expression

(ℓ2⋯ℓ8)N

⋅ (ℓ2⋯ℓ8 ⋅ cas(Q.tail->next)/true)
⋅ (ℓ8 ⋅ cas()/false ↩ ℓ2)N

Context-free grammar
Interpretation: one canonical

trace for every n

• Quotients, semantically.

• Quotient expressions.

• Automata.

• Verifying concurrent objects.

• Automated generation.

Challenges & Contributions

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Q.tail=Q.head
/\ Q.tail->next=null

Q.tail=Q.head
/\ Q.tail->next≠null Q.tail≠Q.head

/\ Q.tail->next≠null

Q.tail≠Q.head
/\ Q.tail->next=null

q1 q2

q3 q4

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Q.tail=Q.head
/\ Q.tail->next=null

Q.tail=Q.head
/\ Q.tail->next≠null Q.tail≠Q.head

/\ Q.tail->next≠null

Q.tail≠Q.head
/\ Q.tail->next=null

q1 q2

q3 q4

Enqueue
Succeed Layer

Enqueue
Succeed Layer

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Q.tail=Q.head
/\ Q.tail->next=null

Q.tail=Q.head
/\ Q.tail->next≠null Q.tail≠Q.head

/\ Q.tail->next≠null

Q.tail≠Q.head
/\ Q.tail->next=null

q1 q2

q3 q4

Enqueue
Succeed Layer

Enqueue
Succeed Layer

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Q.tail=Q.head
/\ Q.tail->next=null

Q.tail=Q.head
/\ Q.tail->next≠null Q.tail≠Q.head

/\ Q.tail->next≠null

Q.tail≠Q.head
/\ Q.tail->next=null

q1 q2

q3 q4

Quotient Automaton

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Michael-Scott Queue

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Michael-Scott Queue
• Many CAS operations

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Michael-Scott Queue
• Many CAS operations
• Linearization points through helping

(advancing the tail)

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Michael-Scott Queue
• Many CAS operations
• Linearization points through helping

(advancing the tail)
• Quotient:

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Michael-Scott Queue
• Many CAS operations
• Linearization points through helping

(advancing the tail)
• Quotient:

‣ Proof organized like authors’ arguments

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Michael-Scott Queue
• Many CAS operations
• Linearization points through helping

(advancing the tail)
• Quotient:

‣ Proof organized like authors’ arguments
‣ Automaton shows when layers are

enabled.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Michael-Scott Queue
• Many CAS operations
• Linearization points through helping

(advancing the tail)
• Quotient:

‣ Proof organized like authors’ arguments
‣ Automaton shows when layers are

enabled.
‣ Linearization points are explicit in the

quotient: one per transition.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue
• Operations involve multiple CAS steps

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue
• Operations involve multiple CAS steps
• Linearization points through helping

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue
• Operations involve multiple CAS steps
• Linearization points through helping
• Operations are synchronous.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue
• Operations involve multiple CAS steps
• Linearization points through helping
• Operations are synchronous.
• Quotient:

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue
• Operations involve multiple CAS steps
• Linearization points through helping
• Operations are synchronous.
• Quotient:

‣ Proof organized like authors’ arguments

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue
• Operations involve multiple CAS steps
• Linearization points through helping
• Operations are synchronous.
• Quotient:

‣ Proof organized like authors’ arguments
‣ Automaton shows enabled layers.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: SLS Queue
• Operations involve multiple CAS steps
• Linearization points through helping
• Operations are synchronous.
• Quotient:

‣ Proof organized like authors’ arguments
‣ Automaton shows enabled layers.
‣ Linearization points are explicit.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

x3 x2 x1
CAS

top

x4

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

x3 x2 x1
CAS

top

x4

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

x3 x2 x1
CAS

top

x4

Treiber’s Stack

(Push,
tid2, 42)

(Pop,
tid4, _)

Elimination Stack extension [Hendler et al. 2004]

location[tid]

tid4

collision[]

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

x3 x2 x1
CAS

top

x4

Treiber’s Stack

(Push,
tid2, 42)

(Pop,
tid4, _)

Elimination Stack extension [Hendler et al. 2004]

location[tid]

tid4

collision[]

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

x3 x2 x1
CAS

top

x4

Treiber’s Stack

(Push,
tid2, 42)

(Pop,
tid4, _)

Elimination Stack extension [Hendler et al. 2004]

location[tid]

tid4

collision[]

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Stacks

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Stacks
• One ADT (Treiber) used as a submodule.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Stacks
• One ADT (Treiber) used as a submodule.
• Linearization points for two operations at

one CAS operation (elimination)

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Stacks
• One ADT (Treiber) used as a submodule.
• Linearization points for two operations at

one CAS operation (elimination)
• Quotient:

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Stacks
• One ADT (Treiber) used as a submodule.
• Linearization points for two operations at

one CAS operation (elimination)
• Quotient:

‣ Proof organized like authors’ arguments

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Stacks
• One ADT (Treiber) used as a submodule.
• Linearization points for two operations at

one CAS operation (elimination)
• Quotient:

‣ Proof organized like authors’ arguments
‣ Linearization points explicit.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Stacks
• One ADT (Treiber) used as a submodule.
• Linearization points for two operations at

one CAS operation (elimination)
• Quotient:

‣ Proof organized like authors’ arguments
‣ Linearization points explicit.
‣ Captures “active” versus “passive”

concepts (in the automaton layers).

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

Some enqueuers
increments back

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

Some enqueuers
increments back

(Maybe) some enq’s
writes a slot

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

dequeue scans
that succeed

Some enqueuers
increments back

(Maybe) some enq’s
writes a slot

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

dequeue scans that
need to restart

dequeue scans
that succeed

Some enqueuers
increments back

(Maybe) some enq’s
writes a slot

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

• Linearizability: Depend on the future! Not fixed.

• An array of slots for items, with a shared variable back

• enq atomically reads and increments back and then later stores
a value at that location.

• deq repeatedly scans the array looking for the first non-empty
slot in a doubly-nested loop.

• Quotient expression: (deqF* ⋅ (enqI)+ ⋅ enqW* ⋅ deqT*)*

dequeue scans that
need to restart

dequeue scans
that succeed

Some enqueuers
increments back

(Maybe) some enq’s
writes a slot

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Herlihy-Wing Queue

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Herlihy-Wing Queue
• Future-dependent linearization points

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Herlihy-Wing Queue
• Future-dependent linearization points
• Linearization points cannot be associated

with fixed statements.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Herlihy-Wing Queue
• Future-dependent linearization points
• Linearization points cannot be associated

with fixed statements.
• Quotient:

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Herlihy-Wing Queue
• Future-dependent linearization points
• Linearization points cannot be associated

with fixed statements.
• Quotient:

‣ Proof organized like authors’ arguments

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Herlihy-Wing Queue
• Future-dependent linearization points
• Linearization points cannot be associated

with fixed statements.
• Quotient:

‣ Proof organized like authors’ arguments
‣ Quotient expressed through regular

expressions.

Herlihy/Wing Queue

Michael/Scott Queue

Hendler et al. Elim. Stack

Harris et al. RDCSS

SLS Queue

Treiber’s Stack

Summary: Herlihy-Wing Queue
• Future-dependent linearization points
• Linearization points cannot be associated

with fixed statements.
• Quotient:

‣ Proof organized like authors’ arguments
‣ Quotient expressed through regular

expressions.
‣ Linearization points become fixed in

the quotient expression.

Generating Quotient Automata

• MSQ and Treiber Stack have a certain structure

• Enumerate the “local paths” and the “write paths”

• Compute automaton ADT states: boolean combinations of
weakest preconditions)

• Compute automaton edges: whenever implies precondition
of a write path, compute every and each local path that is
possible due to the write path. Create layer edge .

q
q′

q λ q′

Generating Quotient Automata

• Implemented in CIL, using Ultimate Automizer

• Automatically generated automata for a few examples:

• Owicki and Gries [1976]

• Rely/Guarantee [Jones 1983]

• Concurrent Separation Logic [Bronat et al. 2005; Brookes

2004; O’Hearn 2004; Parkinson et al. 2007]

• Views [Dinsdale-Young et al. 2013], TaDa [da Rocha Pinto et

al. 2014]

• Numerous other works [Dragoi et al. 2013; Jung et al. 2018,

2020; Krishna et al. 2018; Ley-Wild and Nanevski 2013; Nanevski
et al. 2019; Raad et al. 2015; Sergey et al. 2015; Turon et al.
2013; Vafeiadis 2008, 2009]

• Reductions [Lipton 1975, Elmas et al 2009], Civl [Hawblitzel et
al. 2015; Kragl and Qadeer 2018; Kragel et al. 2018].

• Many others …

Related Works on Linearizability & Reduction

Conclusion
• Working with representative

interleavings (the quotient) is
easier than working with all
interleavings.

• Quotient can be expressed by
simple context-free expressions

• Applies to a variety of objects
(MSQ, SLS, HWQ, Treiber, Elim)

• Can be automated for some;
open questions…

Thank you!

