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Abstract. Concurrent data structures implemented with software trans-
actional memory (STM) perform poorly when operations which do not
conflict in the definition of the abstract data type nonetheless incur con-
flicts in the concrete state of an implementation. Several works addressed
various aspects of this problem, yet we still lack efficient, general-purpose
mechanisms that allow one to readily integrate black-box concurrent
data-structures into existing STM frameworks.
In this paper we take a step further toward this goal, by focusing on the
challenge of how to use black-box concurrent data structures in an op-
timistic transactional manner, while exploiting an off-the-shelf STM for
transaction-level conflict detection. To this end, we introduce two new
enabling concepts. First, we define data-structure conflict in terms of
commutativity but, unlike prior work, we introduce a new format called
conflict abstractions, which is kept separate from the object implemen-
tation and is fit for optimistic conflict detection. Second, we describe
shadow speculation for wrapping off-the-shelf concurrent objects so that
updates can be speculatively and opaquely applied—and even return val-
ues observed—but then later dropped (on abort) or else atomically ap-
plied (on commit). We have realized these concepts in a new open-source
transactional system called ScalaProust, built on top of ScalaSTM and
report encouraging experimental results.

Further detail and experimental results can be found in the extended ver-
sion of this paper. [8]

1 Introduction

Modern software transactional memory (STM) systems typically perform syn-
chronization on the basis of read-write conflicts: two transactions conflict if they
access the same memory location, and at least one access is a write. It is well
understood that this technique works poorly for contended data objects because
operations that could have correctly executed concurrently are deemed to con-
flict, causing unnecessary rollbacks and serialization.

Some prior works were aimed at this problem and found solutions to some
cases. Transactional Boosting [17] centers around constructing a transactional
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“wrapper” for legacy thread-safe concurrent data structures. Designing a boost-
ing wrapper requires identifying which operations commute, as well as providing
operation inverses. Boosting can take advantage of existing thread-safe libraries,
so there is no need to re-invent the wheel, but is limited to pessimistic treat-
ment of object operations. Hassan et al. [14] provide an optimistic strategy, but
requires white-box access to the data-structure. Transactional Predication [4]
maps semantic conflicts onto read-write conflicts handled by an underlying STM.
Predication can exploit highly-optimized mechanisms provided by off-the-shelf
STM systems, but applies only to sets and maps. Software Transactional Objects
(STO) [18] is an STM design that provides built-in primitives to track conflicts
among arbitrary operations, not just read-write conflicts. Similarly, Transac-
tional Data Structure Libraries [30] describes techniques for building libraries of
transaction-aware data structures. The latter two works do not readily support
existing concurrent ADT implementations (e.g. java.util.concurrent), which
would be appealing because these implementations are highly optimized.

Despite the advances noted above, we still lack general approaches to building
transactional systems that exploit both the conflict resolution of state-of-the-art
STM systems, as well as the high performance of off-the-shelf concurrent abstract
data type (ADT) implementations. Here is an example: imagine we wanted to
use an off-the-shelf concurrent priority queue that supported efficient (copy-
on-write) snapshots, but had no efficient inverse for insert. These seemingly
simple requirements escape all prior techniques. Predication [4] doesn’t quite
fit the bill because it is limited to sets/maps. Optimistic boosting [14] requires
white-box access to the data-structure. Boosting [17] could be made to work
with an inefficient synthetic inverse; however, it would still require pessimistic
synchronization, which isn’t a good fit for most STMs. Thus, new abstractions
must be developed to support efficient use of ADTs with STM systems.

This paper takes a step further toward this goal: we address the challenge
of how to allow updates to black-box highly concurrent objects to be performed
optimistically, while exploiting off-the-shelf STMs. To this end, we introduce
two new key concepts—conflict abstractions and shadow speculation—which,
together, enable programmers to build such transactional systems.

We first consider the challenge of defining and detecting conflict. Conflict be-
tween ADT operations is typically understood in terms of commutativity spec-
ifications [2,31,23,17] which are implementation-independent, but aren’t easily
translated into code. To resolve this tension, we introduce an approximation
of commutativity, called conflict abstractions specifically fit for optimistic syn-
chronization. We build upon the idea that commutativity-based conflict spec-
ifications can be kept separate from object itself, by extending the concept to
keep implementations of commutativity-based conflict detection separate from
the implementation of the data structure. In fact, we can even use the STM it-
self to detect non-commutativity, even when the data structure implementation
doesn’t use the STM at all. The principal advantage is that a programmer can
readily integrate an off-the-shelf concurrent object into a transactional setting,
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without knowing the complex implementation details of the object. Instead, the
programmer simply needs to understand the abstract type.

Conflict abstractions can be used with optimistic STMs (such as ScalaSTM)
to enable optimistic commutativity-based conflict detection. But now how do
we cope with operations being speculatively applied to the objects themselves?
One could potentially delay the application of operations to commit time, but
what about operations that involve return values that are needed by the trans-
action to continue? This requires the ability to predict the effects of operations
which have not yet been applied. To this end, we introduce the idea of shadow
speculation, allowing a transaction to speculatively apply ADT operations to an
object while ensuring the updates cannot be viewed by concurrent transactions.
These updates can be atomically applied at commit time or else discarded in
the case of an abort. This is achieved by first tracking operation replay logs.
We then describe two strategies (based on snapshots and memoization) that
each allow transactions to maintain their own shadow of a shared data structure
and observe return values of their speculative operations. By combining these
shadow copies with commutativity-based conflict abstractions, we enable non-
commutative operations to be applied speculatively to off-the-shelf ADTs and
in a way that is opaque to concurrent transactions.

We have incorporated these ideas into a new transactional object system
called ScalaProust4, built on top of ScalaSTM. ScalaProust, unlike predica-
tion, goes beyond sets/maps and can support objects of arbitrary abstract type
such as priority queues and non-zero indicators. Meanwhile, unlike boosting,
ScalaProust allows optimistic synchronization and integrates with the under-
lying STM, to take advantage of well-engineered STM conflict-detection mecha-
nisms. While the ScalaProust tool also supports pessimistic updates, this paper
focuses on contributions pertaining to optimistic updates.

In summary, we make the following contributions:

1. Conflict abstractions provide a novel way to concretely realize an abstract
data type’s semantic notions of conflict so it can efficiently cooperate with a
generic software transactional memory run-time (Section 3).

2. Shadow speculation allows individual transactions to make private specula-
tive updates to highly-concurrent black-box objects (Section 4).

3. The ScalaProust transactional system,5 built on top of ScalaSTM and com-
bines off-the-shelf ADTs with existing STMs (Section 5).

4. An experimental evaluation demonstrates scalability competitive with ex-
isting specialized approaches such as transactional predication, but with a
wider range of applicability (Section 6).

Limitations. The mechanisms described in this paper are designed for trans-
actional objects and currently don’t support mixtures between transactional

4 This name is a portmanteau of predication and boosting, both influential prior works.
The name is also an hommage to Marcel Proust, an author famous for his exploration
of the complexities of memory.

5 www.github.com/ScalaProust/ScalaProust/
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objects and STM-managed read/write operations. We leave this to future work.
This paper makes conceptual contributions and experimental demonstrates their
impact. A proof of opacity could perhaps be achieved by adapting existing the-
oretical models (e.g. [22]), another important step for future work.

2 Overview

We now highlight the key ideas of this paper with two example concurrent
ADTs—a priority queue and a non-zero indicator (NZI)—and describe how con-
flict abstractions and shadow speculation allow black box implementations of the
ADTs to be used optimistically with an off-the-shelf STM.

2.1 From Commutativity to Conflict Abstractions

Let us first consider the priority queue ADT, supporting the three operations
min()/x, removeMin()/x, and insert(x). We assume that the programmer
already has a concurrent implementation (e.g. from java.util.concurrent).
Moreover, like in transactional boosting [17], we will first require the program-
mer to be aware which operations commute under which circumstances. (Recent
work has shown that commutativity can be synthesized from the ADT’s specifi-
cation [1].) We say that two ADT operations commute provided that they lead to
the same final state and return the same values, regardless of the order in which

min()/x removeMin()/x insert(x)

min()/y true false y ≤ x
removeMin()/y false x = y y ≤ x
insert(y) y ≥ x y ≥ x true

they are applied. As a re-
minder, the table to the
right summarizes sound com-
mutativity conditions for
pairs of priority queue op-
erations. For a more complete collection of commutativity conditions of
ADTs, see [19,1]. In the above example, insert(42) always commutes with
removeMin()/1 because the value inserted (42) was greater than the minimum
value (1) in the priority queue. Also, insertions always commute because the
internal order of the inserted elements will be dictated by their values.

While commutativity specifications benefit from being independent of the
implementation, they are difficult to translate into program source code. In the
pessimistic setting, transactional boosting [17] uses so-called abstract locking
and, for priority queues, gives an example of a single read/write lock to approx-
imate commutativity. The challenge remains: how can we use commutativity
specifications as the basis for optimistic conflict detection and, moreover, can
we exploit black-box optimistic STMs to perform this abstract conflict detec-
tion?

Toward this challenge, we begin by introducing conflict abstractions. The
idea is to approximate commutativity-based conflict detection by using the STM
itself, keeping the implementation of conflict detection separate from the imple-
mentation of the ADT (which may not even use the STM at all). Let’s say
thread T1 would like to perform min() and thread T2 would like to perform
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removeMin(). The (logical) commutativity of these operations tells us that we
should assume these operations conflict. The idea of a conflict abstraction is to
represent this logical notion of conflict by introducing concrete STM-managed
variables and rules for when those variables should be read/written so that the
STM will detect a conflict when these two transactions try to proceed with non-
commutative operations. As a trivial example, we could create a new variable v,
and require T1 to read v and T2 to write (some random fresh value) to v. In this
way, the read(v) summarizes the logical “read-only” nature of min, while the
write(v) summarizes the logical update made by removeMin(). Notice that we
have now (in a limited way) tricked the STM to perform commutativity-based
conflict detection and have not had to touch the internals of the priority queue.
Note that, in some cases, this new variable v could potentially be removed by a
compiler, and so we must protect v with an annotation such as volatile.

Let’s now generalize beyond this single-variable example. The idea is that
threads summarize the ADT operations they plan to perform—a sort of digest—
through a few read/write operations on some freshly-introduced STM-managed
variables. The primitives in this digest are chosen to reflect various conceptual
aspects of the object’s abstract state (e.g. a priority queue’s minimum value,
size, and multiset). This digest, if written correctly, is such that whenever the
ADT operations being performed by two threads do not commute, operations on
the digest primitives will be found to conflict. This mapping of abstract state to
STM variables, and the rules for which to read and which to write—as a function
of the ADT operation being performed—is what we call a conflict abstraction.
Here is a conflict abstraction for the priority queue ADT:

Conflict Abstraction for Priority Queue
CA STM vars: vmin, vincr, vdecr, with CA operation rules:

min()/x : rd(vmin)
removeMin()/x : wr(vdecr);wr(vmin)
insert(x) : wr(vincr); if (x < min())) wr(vmin) else rd(vmin)
size()/n : rd(vdecr); rd(vincr)

In this conflict abstraction (CA), we use STM-managed variables vmin, vincr, and
vdecr. Intuitively, vmin summarizes whether operations are somehow dependent
upon the minimum element. Writing to variable vincr summarizes whether the
operation increases the size of the queue, while reading from vincr indicates that
the operation is sensitive to whether the size will increase. vdecr is similar. Notice
that if we take any initial state, and consider any pair of ADT operations, if the
CA operation rules are followed, then the STM will detect some kind of conflict
on at least one of the memory locations vmin, vincr or vdecr.

As an example, let’s say that we have operations T1 : removeMin()/42 and
T2 : insert(1). In general these operations do not commute because the element
being inserted is less than the current minimum value so, depending on the order
of the operations, T1 will observe different values (and the final state of the ADT
will be different). Following the CA operation rules, T1 will write vdecr and write
vmin. Meanwhile, T2 will write vincr and either read or write vmin, depending on
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the ADT’s current min. (Here min is a another ADT method, which will itself
perform a read on vmin.) Off-the-shelf STMs will detect some kind of conflict,
e.g., a write/read or write/write conflict on vmin, effectively doing the work
of non-commutativity detection. On the other hand, let’s assume that initially
33 is the minimal element of the priority queue and consider two commutative
operations: T1 : insert(42) and T2 : min/33. In this case T1 will write vincr and
read vmin, while T2 will read vmin. An off-the-self STM won’t detect any conflicts
(two reads on vmin don’t conflict), correctly reflecting that these abstract ADT
operations commute.

This approach is not limited to priority queues. Let’s consider a second exam-
ple: a Counter that is capable of non-zero indication (NZI), as inspired by Ellen
et al. [10]. Like the priority queue, this is a standard ADT, but not a map/set-
like structure required by predication [4]. NZI provides three operations: inc(),

inc() dec()/p zero()/p

inc() true ¬p ¬p
dec()/q ¬q q = p q = p

zero()/q ¬q q = p true

dec()/p, zero()/p, where dec() returns a
flag indicating if the operation failed because
the NZI was already zero. The commutativ-
ity is to the right. Two inc() operations are
independent, as are two zero() operations.
Naturally, an inc() may alter the return value of zero() and dec() which fur-
ther complicates matters. In these cases, commutativity depends on the return
values of dec() and zero(). Once again, we cannot directly use this commuta-
tivity specification, because it is not in a format readily understood by STMs.
The following corresponding conflict abstraction can be:

Conflict Abstraction for Non-Zero Indicator (NZI)
CA STM vars: vzero, with CA operation rules:

inc() : if (zero()) wr(vzero) else rd(vzero)
dec()/q : if (willBeZero()) wr(vzero)else rd(vzero)
zero()/q : read(vzero)

For NZI, one can use a single STM memory location vzero to summarize the
abstract conflict. As we discuss in Section 3, one can construct a CA differently,
depending on the ADT and how finely grained one would like to characterize
conflict. Taking an example of T1 : inc() and T2 : zero(), it is easy to see
that an STM will detect conflict on vzero, depending on whether the NZI is zero.
Notice that we have used zero() which, itself is an operation. The ScalaProust
system, outlined in Section 5, is able to support CAs that, themselves contain
other method calls, by collecting transitive dependencies. Our conflict abstrac-
tion above also used another helper method willBeZero(). This function de-
pends not only the NZI ADT’s current state, but also on potential future states,
to characterize its commutativity. In the Section 4 we will describe how we sup-
port such helper functions to examine aspects of the state (and even predicted
state) and enable more precise conflict abstractions.

While this paper focuses on optimism, as a side node, conflict abstractions
can also be used for pessimistic conflict detection, by defining boosting-like ab-

6



stract locks. Each CA variable can instead be a lock and the conflict abstraction
indicates whether the lock should be acquired in read or write mode.

2.2 Support for Shadow Speculation

While conflict abstractions provide a route to optimistic, commutativity-based
conflict detection, the question remains: is it safe to perform the ADT opera-
tions optimistically? The answer is, of course, no. Optimistic transactions may
abort and, to ensure opacity, their uncommitted effects must not be observed
by concurrent transactions. The next idea of this paper—called shadow spec-
ulation—allow one to take an off-the-shelf ADT implementation and perform
speculative updates on it, and even view return values. Our strategy makes
these speculative updates invisible to concurrent transactions and permits them
to be either discarded (on abort) or atomically applied (on commit). In Section 4
we describe how to achieve shadow speculation using a combination of wrappers,
operation replay logs, and one of two techniques to predict values: fast snapshots
and memoization.

2.3 The ScalaProust Transactional System

With conflict abstractions and shadow speculation, we now have a path to use
black-box ADTs in an optimistic setting, with black-box optimistic STMs. In
Section 5 we discuss ScalaProust, built on top of ScalaSTM [5].

In Section 6 we conclude with an evaluation, demonstrating that black-box
ADT implementations can be used on top of high-performance STMs with opti-
mistic read/write conflict detection. Moreover, we can obtain performance that
is on the order of transactional predication, yet permits a more expressive class
of objects (beyond map/set-like structures).

2.4 Related Work

In Section 1, we noted prior works including transactional boosting [17], transac-
tional predication [4], optimistic boosting [14], software transactional objects [18],
and transactional data structure libraries [30]. While these prior works were
sources of inspiration, each of them tackled slightly different problems. The con-
cepts of conflict abstractions and shadow speculation described here are novel,
as well as our new ScalaProust transactional system.

Two aforementioned recent works aimed at developing data-structure imple-
mentations from the ground-up so that they are amenable to a transactional
setting. Herman et al. [18] build on top of a core infrastructure that provides op-
erations on version numbers and abstract tracking sets that can be used to make
object-specific decisions at commit time. Spiegelman et al. [30] describe how to
build data-structure libraries using traditional STM read/write tracking primi-
tives. In this way, the implementation can exploit these STM internals. Unlike
these prior works, our aim is to reuse existing linearizable objects and exploit
the decades of hard-work and ingenuity that went into their implementations.
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In recent years, it has been shown the commutativity can be verified [19]
or even synthesized [1] from ADT specifications. Early work on exploiting com-
mutativity for concurrency control includes Korth [20], Weihl [32], CRDTs [29],
and Galois [24]. Some false conflicts in STMs can be alleviated by other escape
mechanisms such as open nesting [25], elastic transactions [11], and transactional
collection classes [6]. Other mechanisms that exploit commutativity include au-
tomatic semantic locking [13] and dynamic race detection [9].

3 Conflict Abstractions

The principal challenge for any type-specific transactional object implementation
is how to map type-specific notions of conflict into a low-level synchronization
framework. Like others [4,17,21,22], we identify type-specific synchronization
conflicts with a failure to commute: two operations commute if applying them in
either order yields the same return values and the same final object state. In this
section, we describe conflict abstractions which permit optimistic transactional
conflict detection, without exposing the internals of a black-box object. Our
approach symbolically represents aspects of the object’s abstract state as STM-
managed memory locations, kept separate from the ADT implementation itself.

We will use the following definitions.M are the set of object methods o.m, o.n,
etc. A method signature is denoted o.m(x̄) where x̄ represents the vector of ar-
guments to method m. A are method argument values. We denote a vector of
argument values as ᾱ where each element α is the value for the corresponding
element in x̄ (as denoted earlier in this paper). An invocation is an application
of a method to a vector of arguments, o.m(ᾱ), o.n(β̄), etc. Σo is the abstract
state space for object o; we do not need to model the implementation of o. We
also assume that the object provides (or can be extended to provide) various
read-only methods that permit a transaction to query aspects of the object’s
abstract state, such as o.size(), etc. Finally, we write P : Σ → B to be the type
of a state predicate.

As discussed in Section 2.1, a conflict abstraction (CA) is a way of approxi-
mating commutativity by summarizing the effects of black-box object methods
using a series of memory operations. More precisely,

Definition 1 (Conflict abstraction). A conflict abstraction is a pair (X, f)
where X is a finite set of variables and f :M→A→ Σ → (P×X×{rd,wr})list.

Intuitively, a conflict abstraction first has a set of abstract locationsX, represent-
ing STM-managed memory (or locks if used pessimistically). For a given object
method o.m(ᾱ) with arguments ᾱ and object state σo, the conflict abstraction
function f returns a list of (p, x,mode) tuples. Each tuple consists of a condition
p, a location x and a mode (read or write). For each tuple, if the condition p holds,
then the thread is instructed to access location x with the given read-vs-write
mode. Recall from Section 2.1 the priority queue example. We can now define the
conflict abstraction so that f(o.insert, [1], σpq) = {(true, vincr,wr), (1 < o.min(),
vmin,wr), (1 ≥ o.min(), vmin, rd)}. That is, the transaction is instructed to write
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to vincr and then read or write to vmin depending on whether 1 is less than
the current minimum value. (Note o.min() appears in the CA of o.insert(),
so o.insert()’s CA depends on o.min()’s.) Similarly, we let f(o.min, [], σpq) =
{(true, vmin, rd)}. In Section 5 we describe how these conflict abstractions are
used inside “wrappers” so that transactions perform these STM read/write op-
erations just before the corresponding operation and again before commit.

The impact of conflict abstractions is that we can leverage an STM to perform
transactional conflict detection, even though the ADT is treated as black-box.
In the above example, the STM will detect a read/write conflict on vmin and we
have enabled efficient STMs to do the work of conflict detection.

Conflict abstractions have several benefits over conflict strategies based on
abstract locks [17] or commutativity alone. The format of a conflict abstraction
is more algorithmic and less declarative than prior strategies. A programmer
will already have at least an intuitive understanding of the black-box object’s
abstract state, and it is easier to translate this into a series of STM locations and
read/write operations. This avoids the need to think about pair-wise reasoning
(as in commutativity or abstract locks) upfront: one instead simply considers
the effects of each operation independently. Later, one can verify the correctness
of their conflict abstraction through pair-wise reasoning (see discussion below).

Notice that a conflict abstraction can be more fine-grained or more coarse-
grained with respect to how it represents the object’s abstract state. A trivial
coarse-grained conflict abstraction would have cardinality 1 and use a single
STM location x, and map all read-oriented object methods to read x and map
all object mutator methods to write x. While simple and correct, the downside is
of course that concurrency may be lost. The choice of granularity (cardinality) is
often specific to the data structure and the workload. Regardless, it is important
that the conflict abstraction be correct:

Definition 2 (Correctness). A conflict abstraction (X, f) is correct provided
that for every m(ᾱ) and n(β̄) that do not commute, and every σo, there exists
some (p, v,m1) ∈ f(o.m, ᾱ, σo) and (q, v,m2) ∈ f(o.n, β̄, σo) such that p(σo) and
q(σo) and either m1 = wr or m2 = wr.

A CA is correct if, for any pair of non-commutative method invocations, there
will be some location with either a read/write or write/write conflict.

Verifying Conflict Abstractions. Existing software verification tools can verify
the correctness of a conflict abstraction. Specifically, the question of correctness
can be reduced to satisfiability, fit for reasoning with SAT/SMT tools. We do not
need the ADT’s implementation; instead, it is sufficient to work with a model
(or sequential implementation) of the abstract data type. As done previously [1],
it is easy to model a variety of ADTs in SMT.

Once we have modeled object methods m and n, we further model conflict
abstractions. SMT reasoning then proceeds by asserting the following series of
constraints: (1) Method m performs its conflict abstraction reads/writes. (2)
Method m performs its data-structure operation. (3) Method n performs its
conflict abstraction reads/writes. (4) No read/write or write/write conflict oc-
curs. (5) Method n performs its data-structure operation. We now need to ensure
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that the resulting state is the same as it would have been if the operations exe-
cuted in the opposite order. Using different variable names for the intermediate
states, we then assert the other order (n before m). Finally, we assert that the
results (return values and final state) were different and check whether this is
satisfiable. If it is not satisfiable, then the conflict abstraction is correct.

Other ADTs. To highlight the generality of our approach, we now describe
conflict abstractions for some other ADTs.

– Stack. Since stack operations are typically focused only on the top element,
most operations conflict. A suitable conflict abstraction can consist of a
single variable v, where both push and pop write to v. If the stack supports
a peek operation (i.e. inspecting the top element without removing it), then
peek can simply perform a read of v, enabling concurrent peek operations.
A more sophisticated conflict abstraction could take into account the values
on the stack.

– Sets and Map. A conflict abstraction for a Set or Map can use a strategy
similar to boosting [17]. Since the number of elements/keys could be large,
one may not want a CA that separately tracks each element or key. Instead,
some smaller number N of CA locations can be used and, when an element
e is accessed, the CA can instead read or write location ve%N . The choice
of N can depend on the workload. Naturally, put(k,v), for example, would
write to location vk%N , while get(k) would read.

– Directed Graph. Consider a directed graph with methods addNode(nid),
addEdge(nid,nid’), and getNext(nid)/nids. As with Sets and Hashta-
bles, the number of nodes n may be large so we may want to only have
some N << n CA locations. We can thus define a conflict abstraction (X, f)
where X = {v0, . . . , vN} and

f(addNode, [nid], σ) = {(true, vnid%N ,wr)}
f(getNext, [nid], σ) = {(true, vnid%N , rd)}
f(addEdge, [nid,nid’], σ) = {(true, vnid%N ,wr)}

The idea is to approximate conflict by focusing on the nodes. This node-based
notion of conflict is one approach but one could imagine an alternative CA
that uses edges as a basis for conflict. Each strategy is an approximation of
conflict and the choice of strategy may depend on the specific semantics of
the graph, methods, and/or workload. Indeed, one could even use edges and
nodes as a basis for a CA, if a very fine-grained notion of conflict is needed.
Notice that this CA places no restrictions on how the directed graph is
actually implemented.

4 Shadow Speculation

Transactional Boosting [17] performed ADT operations eagerly and used inverse
operations to apply an operation undo log to cleanup an aborted transaction.
Unfortunately, this approach was coupled with pessimistic conflict resolution,
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where execution blocks when a conflict is detected. In an optimistic setting,
transactions execute as if they will not encounter conflicts, and abort/retry if
conflicts are detected. The key challenge is that a transaction must be able to
observe the results of its own speculative updates to shared objects, without
those updates becoming visible to other transactions until a successful commit
occurs.

This is where shadow speculation helps. Shadow speculation is a technique
for transactional objects, where updates are made on a separate local copy of
a data-structure and then later merged with the master copy at commit time,
similar to version control. This is conceptually similar to the thread-local copies
used by lock-free and wait-free universal constructions [15,16]; however, conflict
abstractions allow our approach to support finer grained concurrency, and we de-
scribe several techniques which allow our shadow copies to incur a lower memory
overhead.

Replay logs. We begin by creating wrappers around a black-box ADT im-
plementation so that we can replace the default behavior of a method invocation
(i.e. immediately applying it to the object) with a more speculative strategy.

To support commit, we maintain an operation replay log, tracking the method
names and arguments of all operations performed by a transaction rather than
applying operations directly on the object (as seen in Boosting). Then, at com-
mit, we can use a single data-structure lock to atomically replay the log of
operations onto the shared object.

Unfortunately, this is insufficient for most applications as once an active
transaction enqueues an operation to the log, it may need to know the return
value in order to continue.

Speculative wrapper. Conceptually, the natural next step is for active
transactions to be able to operate on their own local or shadow copy of the shared
data-structure. This allows those transactions to perform operations that are in-
visible to concurrent transactions, and in particular, it also allows transactions to
view the return values of these uncommitted operations. Our shadow copies are
implemented inside the wrapper and designed so that when client code (specula-
tively) calls ADT operations, it predicts the result of each operation, intuitively
reaching forward in time to see what return value would be generated if the
transaction were to commit. The predicted values for a transaction T is calcu-
lated based on the committed state of the (black-box) object, combined with the
uncommitted operations performed thus far by T . When a transaction aborts, a
wrapper of this variety has no further work, because the underlying data struc-
ture has not been altered, and the shadow copy can be discarded. On the other
hand, when a transaction commits, the wrapper must use the operation replay
log to ensure that every speculative operation is finally applied to the underlying
object.

While shadow copies are conceptually simple, they are not practical if im-
plemented näıvely. Therefore, we must consider how to efficiently implement
shadow copies for a variety of data structures.
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Efficient shadow copies. Here we describe two approaches for efficient
shadow copies.

1. Memoization. For some data-structures, the results of an operation (even an
update) can be computed purely from the initial state of the wrapped data-
structure, or from the arguments of other pending operations. In these cases,
we may implement shadow copies by memoization. Repeated operations to
the same key can be cached in a transaction-local table, and queried, to
determine the results of the next operation on that key. If the key is not
present, it’s state can be determined by reading the unmodified backing
data structure. Then, when the transaction commits, we can replay a single
synthetic operation for each key in the table, to capture its final state.
Memoization works particularly well for ADTs such as maps and sets: the
result of m.set(a,x) followed by m.get(a) (a read-only operation) is x.
We implemented this approach in our LazyHashMap, using Java’s Concurren-
tHashMap as the underlying data-structure.

2. Snapshots. For many data structures, memoization will be insufficient.
A more general approach uses the fast-snapshot semantics provided by many
concurrent data structures [26,27,3,28] to support shadow speculation. Such
snapshots typically employ a lazy copy-on-write strategy to allow snapshots
to initially share their internal structure with the original, and only copy as
much data as is needed to perform each subsequent modification.
Using snapshots for our shadow copies, the first time a transaction attempts
to perform an update, a snapshot is made, and all further updates are per-
formed on that snapshot. Whenever a transaction commits, any changes to
the snapshot are replayed onto the shared copy.
Snapshot implementations of shadow copies are also helpful in providing the
“peek” methods such as min (priority queue) and zero/willBeZero (NZI)
discussed above. For example, shadow copies let us determine ahead of time
if the operation in question will change the result of zero() before and after
the invocation.
We implemented two data-structures this way: LazyTrieMap (based on Scala’a
TrieMap) and LazyPriorityQueue (based on a concurrent Braun heap [7]).

5 The ScalaProust Transactional System

In this section we describe our implementation ScalaProust, an open source
transactional system, available at the following URL:

www.github.com/ScalaProust/ScalaProust/

Our implementation includes support for both pessimistic operations on
black-box highly concurrent ADTs (similar to boosting) as well as optimistic
operations, as discussed in this paper. In this way the tool generalizes both
boosting and predication. In this paper, however, we focus on how ScalaProust
is used for optimistic operations, based on conflict abstractions (Sections 3) and
shadow speculation (Section 4).
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We first define a conflict abstraction (X, f) for the ADT, as discussed in Sec-
tion 3. Next, we create a ScalaProust wrapper and decide whether the wrapper
will manage shadow speculation via snapshots or via a memoization table, as dis-
cussed in Section 4. The wrapper can then be constructed, as defined to the right,

1 let proust apply(T, o.m, ᾱ) =
2 let locs = f(o.m, ᾱ, σo) in
3 foreach (fun (p, v, mode) →
4 if p(ᾱ, σo) then match mode with
5 | rd → stm read(v)
6 | wr → stm write(v)
7 ) locs
8 let rv = Predict(o.m,ᾱ) in
9 T .onCommit(fun () → { o.m(ᾱ);

10 foreach (fun ( ,v, ) → stm read(v) )
11 locs });
12 return rv

to invoke each supported opera-
tion. proust apply must execute in
the context of a transaction T in
order to register onCommit events.

The wrapper proceeds as fol-
lows. First, the conflict abstraction
f is consulted for the given method
m and arguments ᾱ, returning the
list of (p, v,mode) tuples (Line 2).
Next, the wrapper follows the in-
structions of each tuple of the con-
flict abstraction: if p(ᾱ, σo) holds,
then location v is either read or written (Line 3). The shadow speculation facil-
ity is used next (Line 8) to speculatively apply the method and obtain a return
value rv. Finally, the wrapper registers an onCommit handler (Line 9) which will
invoke the method on the shared object and once again read all of the conflict
abstraction memory locations to guard against opacity violations.

ScalaProust includes a library API implementing conflict abstractions, as
well as replay logs for both shadow speculation techniques. ScalaProust also
provides a number of wrapped data structures out of the box, including both
transactional maps and transactional priority queues, which can be used as-is,
or serve as example code for developers to create their own wrappers.

6 Evaluation

Our goal in this section is to evaluate whether our optimistic treatment of black-
box ADTs is efficient. Notably, our evaluation includes experiments to determine
whether ScalaProust is competitive with the state-of-the-art specialized opti-
mistic treatment of set/map-like structures found in predication [4]. Note that,
for lack of space, we summarize the experimental results here. In the extended
version of this paper [8], we have included additional experimental results and a
discussion of how ScalaProust can be used pessimistically.

We focus our evaluation on time-efficiency rather than memory-efficiency
for several reasons. First, it is difficult to reproducibly measure memory usage
on the JVM due to its weak guarantees concerning garbage collection. Second,
the memory usage is likely to be dependent on the specific implementation of
the shadow copy, as well as the workload. However, we expect that for tree-
like data-structures which exploit structural sharing for fast snapshots, the first
modification will introduce O(log(n)) memory overhead, and gradually saturate
towards O(n).
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Fig. 1: Time to process 106 operations on concurrent maps (smaller is better),
varying %-updates and #ops/txn. For each chart, the x-axis is the number of
threads from 0 to 32 and the y-axis is the average time in milliseconds from 0
to 250. The (NS) variants disabled size().
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Fig. 2: Memoizing shadow copies allow updates of the same entry to be com-
bined, providing a substantial decrease in execution time. Smaller is better.

We classify data structure wrappers based on conflict abstractions along
two axes: their choice of synchronization strategy (optimistic or pessimistic),
and their choice of update strategy (lazy or eager). Optimistic synchronization

14



Fraction of operations that are writes (u)
0.25 0.5 1

O
p
s

p
er

tr
a
n
sa

ct
io

n
(o

)

1
6

 

 

 

 

 

 

 

 

 

 

 0  5  10  15  20  25  30
 

 

 

 

 

 

 

 

 

 0  5  10  15  20  25  30
 

 

 

 

 

 

 

 0  5  10  15  20  25  30

 

 

 

 

 

 

 

 0  5  10  15  20  25  30
Traditional Proust[Lazy/Opt]-BraunHeap (NS) Proust[Lazy/Opt]-BraunHeap

Fig. 3: Time to process 106 operations on concurrent priority queues (smaller is
better), varying %-updates. For each chart, the x-axis is the number of threads
from 0 to 32 and the y-axis is the average time in milliseconds from 0 to 2400.
The (NS) variants disabled size().
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Fig. 4: Overhead of the transactional wrapper (relative to the base data struc-
ture) for different configurations of ScalaProust (vertical axis) vs thread count
(horizontal axis), with o = 1. On the left are transactional maps and on the right
are transactional priority queues. Smaller is better.

has been the primary focus of this work; however, pessimistic synchronization
has been used in transactional boosting [17]. Similarly, lazy updates based on
shadow copies and replay logs have been the primary focus this work; how-
ever, the conflict abstraction methodology can also be applied to eager updates
based on inverses and undo logs à la boosting. We present results for three of
the four possible quadrants: lazy/optimistic, eager/optimistic, and eager/pes-
simistic. Lazy/pessimistic wrappers are possible, but it seems unlikely that the
extra memory overhead for lazy updates will pay off when pessimistic synchro-
nization already ensures exclusive access to the relevant portions of the shared
state.
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Maps. We benchmarked several ScalaProust map wrappers (including
variants with and without a size() operation) against both predication and a
traditional pure-STM hash map, with a setup similar to that used by Bronson, et
al. for predication [4]. We ran our experiments on an Amazon EC2 m4.10xlarge

instance,6 which has 40 vCPUs and 160 GB of RAM. For each experiment,
we performed 106 random operations on a shared map, split across t threads,
with o operations per transaction. A fraction u of the operations were writes
(evenly split between put and remove), and the remaining (1 − u) were get

operations. We varied t, o, and u to achieve different levels of contention7. For
each configuration, we warmed up the JVM for 10 executions, then timed each
of the following 10 executions, garbage collecting in between to reduce jitter,
and reported the mean and standard deviation.

Notes on experimental setup. First, our implementation was limited
in its communication with the CCSTM contention manager. ScalaProust can
communicate conflicts with CCSTM but currently does not provide the reason
for the conflict. Consequently, CCSTM is limited in its ability to intelligently
schedule retries. In particular, we found that under the artificially high con-
tention seen in these experiments, longer transaction times could lead to live-
lock, as the STM lacked required information about the instigating (non-STM)
memory accesses. For this reason, we only show the pessimistic results in the ini-
tial o = 1 experiments. Second, though the Eager/Optimistic configuration does
not satisfy opacity under the CCSTM backend for ScalaSTM, we benchmarked
it anyway, and did not observe any instances where this violated correctness (no-
tably our benchmark makes no explicit control flow decisions based on the results
of map accesses, and ScalaSTM performs an abort and retry if it ever observes
an unchecked exception). It seems likely that a performance penalty was paid
for late detection of inconsistent memory accesses, and we believe this speaks
well to the potential performance of Eager/Optimistic wrappers on STMs where
they satisfy opacity. Third, substantial performance differences between the stan-
dard and (NS) wrapper variants illustrate the previously discussed impedance
mismatch between “pure” writes in a conflict abstraction and “impure” writes
provided by STMs. We note that disabling the size operation for the (NS)

variants did not require modifications to the underlying data structure, merely
that we control which operations of the underlying data structure are exposed
through the wrapper.

Results. The experimental results depicted in Figure 1 display the effects
of several competing trends. Intuitively, ScalaProust’s performance scales much
better than the traditional STM implementation as contention increases, due to
varying t and u (though we are consistently outperformed by the highly en-

6 https://aws.amazon.com/blogs/aws/the-new-m4-instance-type-bonus-price-

reduction-on-m3-c4/
7 We did not vary key range as in the predication paper, as garbage collection was not

a focus of this implementation
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gineered predication implementation8); however, increasing values of o have a
negative influence on the relative performance of the ScalaProust wrappers.
Intuitively, this is to be expected, as our log sizes (either to undo or replay) are
proportional to the number of updates performed, whereas predication and tra-
ditional implementations replay with time proportional to the number of unique
memory locations updated, and as o increases, so does the probability that multi-
ple writes will alter the same location. An optimization for memoization-, rather
than snapshot-, based shadow speculation is to apply only the final state of
each abstract state element; resulting in Figure 2. The overhead of the wrapper,
relative to the base data structure can be seen in Figure 4.

Priority Queues. We used a nearly identical experimental setup to com-
pare the runtimes of two priority queues based on Braun heaps (one traditional
STM implementation and one wrapper around the snapshot-able concurrent im-
plementation referenced earlier [7]). The writes were split evenly between insert

and removeMin operations.
The experimental results in Figure 3 show that across a variety of conditions,

the queue was competitive with, or outperformed, the traditional implementa-
tion. In general, run times were substantially longer than for the map throughput
test, as the min-element is subject to heavy contention; however, unlike for map,
the effects of additional operations per transaction were less pronounced, as most
contention is discovered early in the transaction. The overhead of the wrapper,
relative to the base data structure is shown in Figure 4.

7 Conclusions & Future Work

We introduced conflict abstractions and shadow speculation, permitting us to
use existing highly-concurrent objects in an optimistic transactional manner,
separately using off-the-shelf STMs for performing commutativity-based conflict
detection. Benchmarks show we outperform, or are competitive with fine-tuned
STM techniques (i.e. predication), while we are able to leverage existing ADT
libraries and avoid implementing them from scratch. While we are outperformed
by predication on the map throughput tests, we believe that our utility as a tool
for wrapping arbitrary data structures will encourage use beyond sets and maps.

One important direction forward is to integrate pessimistic and optimistic
treatment of black-box ADTs with standard STM memory operations. This
brings with it some opacity challenges. To further improve performance, one
could also explore an extension of our log-combining optimization from mem-
oized replays to snapshot replays and undo logs. Alternatively, shadow copies
based on confluently persistent data structures could even be merged without an
explicit log [12]. In another direction, the use of conflict abstractions to describe
commutativity and synchronization reveals a use-case for STMs to support “pure
writes”, allowing them to match the expressivity of handcrafted locks. Finally,

8 Predication as a technique is specialized to maps and sets, in essence embedding their
conflict abstraction as the member elements of the backing collection and allowing
frequent updates to the same element to avoid updating the concrete state of the
backing data structure.
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automatic verification techniques (such as those mentioned in Section 3) might
be used as a building-block for an automatic synthesis technique, perhaps along
the lines of recent techniques for synthesizing commutativity conditions [1].
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