
Constraint-based Relational Verification

Hiroshi Unno1,2, Tachio Terauchi3, and Eric Koskinen4

1 University of Tsukuba, Ibaraki, Japan
2 RIKEN AIP, Tokyo, Japan

3 Waseda University, Tokyo, Japan
4 Stevens Institute of Technology, New Jersey, USA

Abstract. In recent years they have been numerous works that aim to
automate relational verification. Meanwhile, although Constrained Horn
Clauses (CHCs) empower a wide range of verification techniques and
tools, they lack the ability to express hyperproperties beyond k-safety
such as generalized non-interference and co-termination.
This paper describes a novel and fully automated constraint-based ap-
proach to relational verification. We first introduce a new class of predi-
cate Constraint Satisfaction Problems called pfwCSP where constraints
are represented as clauses modulo first-order theories over predicate vari-
ables of three kinds: ordinary, well-founded, or functional. This general-
ization over CHCs permits arbitrary (i.e., possibly non-Horn) clauses,
well-foundedness constraints, functionality constraints, and is capable of
expressing these relational verification problems. Our approach enables
us to express and automatically verify problem instances that require
non-trivial (i.e., non-sequential and non-lock-step) self-composition by
automatically inferring appropriate schedulers (or alignment) that dic-
tate when and which program copies move. To solve problems in this
new language, we present a constraint solving method for pfwCSP based
on stratified CounterExample-Guided Inductive Synthesis (CEGIS) of
ordinary, well-founded, and functional predicates.
We have implemented the proposed framework and obtained promising
results on diverse relational verification problems that are beyond the
scope of the previous verification frameworks.

Keywords: relational verification, constraint solving, CEGIS

1 Introduction

We describe a novel constraint-based approach to automatically solving a wide
range of relational verification problems including k-safety, co-termination [6,
10], termination-sensitive non-interference (TS-NI) [63], and generalized non-
interference (GNI) [40] for infinite-state programs.

A key challenge in relational property verification is the discovery of rela-
tional invariants which relate the states of multiple program executions. How-
ever, whereas most prior approaches must fix the execution schedule5 (e.g., lock-
step or sequential) [8, 20, 21, 42, 54, 57], a recent work by Shemer et al. [50] has
5 The notion of schedule is also often called an alignment in literature.

2 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

proposed a method to automatically infer sufficient fair schedulers to prove the
goal relational property. Importantly, the schedulers in their approach can be
semantic in which the choice of which program to execute can depend on the
states of the programs as opposed to the classic syntactic schedulers such as
lock-step and sequential that can only depend on the control locations. How-
ever, their approach requires the user to provide appropriate atomic predicates
and is not fully automatic. Moreover, they only support k-safety properties. A
recent work has proposed a method for automatically verifying non-hypersafety
relational properties but only for finite state systems [19].

Meanwhile, today’s constraint-based frameworks are also insufficient at au-
tomating relational verification. The class of predicate constraints called Con-
strained Horn Clauses (CHCs) [13] has been widely adopted as a “common in-
termediate language” for uniformly expressing verification problems for various
programming paradigms, such as functional and object-oriented languages. Ex-
ample uses of the CHCs framework include safety property verification [29,30,35]
and refinement type inference [33,36,53,56,66]. The separation of constraint gen-
eration and solving has facilitated the rapid development of constraint generation
tools such as RCaml [56], SeaHorn [30], and JayHorn [35] as well as efficient
constraint solving tools such as SPACER [37], Eldarica [32], and HoIce [14].
Unfortunately, CHCs lack the ingredients to sufficiently express these relational
verification problems.

In this paper we introduce automated support for relational verification by
generalizing CHCs and introducing a new class of predicate Constraint Sat-
isfaction Problems called pfwCSP. This language allows constraints that are
arbitrary (i.e., possibly non-Horn) clauses modulo first-order theories over pred-
icate variables that can be functional predicates, well-founded predicates or ordi-
nary predicates. We then show that, thanks to the enhanced predicate vari-
ables, pfwCSP can express non-hypersafety relational properties such as co-
termination [11], termination-sensitive non-interference (TS-NI) [63], and gen-
eralized non-interference (GNI) [40]. In addition, our approach effectively quan-
tifies over the schedule, expressing arbitrary fair semantic scheduling thanks to
non-Horn clauses and functional predicates (functional predicates are needed to
express fairness in the presence of non-termination which is needed for prop-
erties like co-termination and TS-GNI). The flexibility allows our approach to
automatically discover a fair semantic schedule and verify difficult relational
problem instances that require non-trivial schedules. We prove that our encod-
ings are sound and complete. Expressing relational invariants with such flexible
scheduling is not possible with CHCs. However, pfwCSP retains a key benefit of
CHCs: the idea of separating constraint generation from solving.

We next present a novel constraint solving method for pfwCSP based on strat-
ified CounterExample-Guided Inductive Synthesis (CEGIS) of ordinary, well-
founded, and functional predicates. In our method, ordinary predicates repre-
sent relational inductive invariants, well-founded predicates witness synchronous
termination, and functional predicates represent Skolem functions witnessing ex-
istential quantifiers that encode angelic non-determinism. These witnesses for a

Constraint-based Relational Verification 3

relational property are often mutually dependent and involve many variables
in a complicated way (see the extended report [58] for examples). The synthe-
sis thus needs to use expressive templates without compromising the efficiency.
Stratified CEGIS combines CEGIS [51] with stratified families of templates [55]
(i.e., decomposing templates into a series of increasingly expressive templates)
to achieve completeness in the sense of [34,55], a theoretical guarantee of conver-
gence, and a faster and stable convergence by avoiding the overfitting problem
of expressive templates to counterexamples [44]. The constraint solving method
naturally generalizes a number of previous techniques developed for CHCs solv-
ing and invariant/ranking function synthesis, addressing the challenges due to
the generality of pfwCSP that is essential for relational verification.

We have implemented the above framework and have applied our tool PC-
Sat to a diverse collection of 20 relational verification problems and obtained
promising results. The benchmark problems go beyond the capabilities of the
existing related tools (such as CHCs solvers and program verification tools).
PCSat has solved 15 problems fully automatically by synthesizing complex wit-
nesses for relational properties, and for the 5 problems that could not be solved
fully automatically within the time limit, PCSat was able to solve them semi-
automatically provided that a part of an invariant is manually given as a hint.

2 Overview

2.1 Relational verification problems

k-safety Consider the following program taken from [50] that uses a summation
to calculate the square of x, and then doubles it.

doubleSquare(bool h, int x) {

int z, y=0;

if (h) { z = 2*x; } else { z = x; }

while (z>0) { z--; y = y+x; }

if (!h) { y = 2*y; }

return y;

}

This program also takes another input h and, if the value of h is true, calculates
the result differently. The classical relational property termination-insensitive
non-interference (TI-NI) says that, roughly, an observer cannot infer the value
of high security variables (h in this case) by observing the outputs (y). This is a
2-safety property [17, 54]: it relates two executions of the same program. In this
example, we ask whether two executions that initially agree on x (i.e., x1 = x2)
will agree on the resulting y (i.e., y1 = y2). The subscripts in these relations
indicate copies of the program: x1 is variable x in the first copy of the program
and x2 is variable x in the second copy. More generally, k-safety means that if
the initial states of a k-tuple of programs satisfy a pre-relation Pre, then when
they all terminate the k-tuple of post states will satisfy post-relation Post .

4 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

The literature proposes many ways to reason about k-safety including meth-
ods of reducing a multi-program problem to a single-program problem, such
as through self-composition [8, 54, 57], product programs [7], and their vari-
ants [21,46,50,52,59]. Their key challenge is that of scheduling : how to interleave
the programs’ executions so that invariants in the combined program are able
to effectively describe cross-program relationships. Indeed, as proved by [50],
verifying this example with the naïve lock-step scheduling is impossible with
only linear arithmetic invariants while linear arithmetic invariants suffice with a
more “semantic” scheduling that schedules the copy with h1 = false to iterate
the loop twice per each iteration of the loop in the copy with h2 = true.

In this paper, we will describe a way to pose the scheduling problem as a part
of a series of constraints so that the search for an effective scheduler is relegated
to the solver level. In our approach, a k-safety verification problem is encoded as
a set of constraints containing (ordinary) predicate variables that represent the
scheduler to be discovered and a relational invariant preserved by the scheduler.
Specially, we introduce a predicate variable inv that represents a relational in-
variant and for each A ⊆ {1, . . . , k}, a predicate variable schA(Ṽ1, . . . , Ṽk) where
Ṽi are the variables of the ith program, and add constraints that say that if
the predicate is true, then the programs whose index are in A will step forward
while the rest remain still and also inv is preserved by the step. For soundness,
it is important to constrain the scheduler to be fair, i.e., at least one program
that can progress must be scheduled to progress if there is a program that can
progress. As we shall show in Sec. 4, non-Horn clauses are essential to expressing
the fairness constraint. Roughly, the idea is to use a clause with multiple posi-
tive predicate variables (i.e., head disjunction) to say “if the relational invariant
holds, then at least one of the unfinished programs must be scheduled to progress.”

Our approach is similar to and is inspired by the approach of [50] that also
infers a fair semantic scheduler. However, their approach requires the user to
provide sufficient atomic predicates manually and is not fully automated. By
contrast, our approach soundly-and-completely encodes the k-safety verification
problem together with scheduler inference as a set of constraints thanks to the
expressiveness of pfwCSP, and automatically solves those constraints by the
stratified CEGIS algorithm (cf. Sec. 7 for further comparison).

Co-termination Now consider the following pair of programs.

P cot1 : while (x>0) { x = x - y; }

P cot2 : while (x>0) { x = x - 2 × y; }

A (non-safety) relational question is whether these programs P cot1 and P cot2 agree
on termination [6, 10]. In general they do not: if, for example, P cot1 is executed
with x < 0 and P cot2 with x > 0∧ y = 0, the first will terminate while the second
will diverge. However, under the pre-relation Pre ≡ x1 = x2 ∧ y1 = y2, they will
agree on termination: the first program terminates iff the second one does. The
property falls outside of the k-safety fragment as it cannot be refuted by finite
execution traces. It is worth noting that termination-sensitive non-interference

Constraint-based Relational Verification 5

(TS-NI) is the conjunction of TI-NI and co-termination of two copies of the same
target program with Pre equating the copies’ low inputs.

Proving co-termination, like k-safety, can be aided by scheduler and we can
again use our constraints over predicate variables. But this is not enough. We
need additional constraints to ensure that whenever one of the two has ter-
minated, the other is also guaranteed to terminate. To address this, we next
introduce well-founded predicate variables. These predicate variables will appear
in our generalized language of constraints as terms of the form wfr(Ṽi, Ṽ

′
i), where

the relation wfr must be discovered by the constraint solving method. (In Sec. 5
we describe how to achieve this through our stratified CEGIS algorithm.) For
the above example, our stratified CEGIS algorithm and our tool PCSat auto-
matically discovers (1) a schedule where the two programs step together when
x1 > 0 and x2 > 0, (2) a relational invariant that implies that if the first pro-
gram is terminated, then either the second program is terminated or y2 ≥ 1
(and vice-versa), and (3) well-founded relations that (combined with the rela-
tional invariant) witness that if the loop has terminated in the second program
(x2 ≤ 0) but not in the first (x1 > 0), then a transition in the first is well-
founded (and vice-versa). In Sec. 4, we show how co-termination problems can
be soundly-and-completely encoded in pfwCSP.

Generalized non-interference. Now consider the following program.

gniEx(bool high, int low) {

if (high) {

int x = *
int; if (x >= low) { return x; } else { while (true) {} }

} else {

int x = low; while (∗bool) { x++; } return x;

}

}

The ∗int (resp. ∗bool) above indicates an integer (resp. a binary) non-deterministic
choice. Termination-insensitive generalized non-interference (TI-GNI) [40] is an
extension of non-interference to non-deterministic programs, and it says that for
any two copies of the program with possibly different values for the high security
input (high in this example) and with the same value for the low security input
(low in this example), if one copy has a terminating execution that ends in
some output (the final value of x in this example), then the other copy has
either a terminating execution ending in the same output or a non-terminating
execution. The termination-sensitive variant (TS-GNI) strengthens the condition
by asserting that if one copy has a terminating execution then the other copy
has a terminating execution that ends in the same output. Both GNI variants
are ∀∃ hyperproperties and fall outside of the k-safety fragment.

Verifying GNI requires handling non-determinism. Note that non-determinism
occurs both demonically (i.e., as ∀) and angelically (i.e., as ∃) in GNI. While
handling demonic non-determinism is straightforward in a constraint-based ver-
ification since the term variables are implicitly universally quantified, handling
angelic non-determinism is less straightforward.

6 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

Encodings for
, k-Safety
, Co-Termination
, Generalized NI
(Section 4)

P1

Relational property
, k-Safety
, Co-Termination
, Generalized NI

UNSAT

SATPk pfw-CSP
Constraint
problems
(Section 3)

Solving pfw-CSP

via Stratified
CEGIS

(Section 5)

Implementation & Evaluation (Section 6)

…

Fig. 1. Overview of the contributions and how they achieve a constraint-based strategy
for relational verification.

Our approach handles finitary angelic non-determinism like ∗bool by adding
non-Horn clauses with head disjunctions that roughly express the condition “the
relational invariant remains true in one of the finitely many next step choices”.
To handle infinitary non-determinism like ∗int, we introduce functional predicate
variables denoted f(Ṽ , r). In these terms, f is a predicate variable to be discov-
ered but with a new wrinkle: this predicate involves a return value r and the
interpretation of f is a total function over Ṽ . For this example, we introduce
the term f(Ṽ , r) where r represents the value chosen non-deterministically at
∗int and Ṽ are program variables and prophecy variables that represent the final
return values of the demonic copy. For this example, PCSat automatically dis-
covers the predicate r = ret1 where ret1 is the prophecy variable for the return
value of the demonic copy. With it, PCSat is able to verify TS-GNI and TI-GNI
of this example. We remark that functional predicates are also used to encode
scheduler fairness in the presence of non-termination and is needed to ensure
soundness for properties like co-termination and TS-GNI. In Sec. 4.3, we show
how TI-GNI and TS-GNI can be soundly-and-completely encoded in pfwCSP.

2.2 Challenges & Contributions

There are several challenges that we face in supporting relational verification
problems with a constraint-based approach. The subsequent sections of this pa-
per are organized around addressing those challenges as follows:

– We first ask how to generalize the constraint language to go beyond CHCs to
express a more general class of relational verification problems. To this end,
in Sec. 3, we present a new language called predicated constraint satisfaction
problems (pfwCSP), which incorporate non-Horn clauses, (ordinary) pred-
icate variables, well-founded predicate variables, and functional predicate
variables.

– We next return to the above relational verification problems –k-safety, co-
termination, and generalized non-interference– and describe how pfwCSP
can express each of them in a sound and complete manner in Sec. 4.

– The next major contribution of our research is a novel stratified CEGIS al-
gorithm for solving pfwCSP constraints. Our approach integrates advanced
verification techniques: stratified family of templates [55] and CEGIS of in-
variants/ranking functions [14, 26, 28, 45]. While the individual ideas have

Constraint-based Relational Verification 7

been proposed previously, they have only been designed for less expressive
frameworks such as CHCs, and substantial extensions are needed to combine
and apply them to the new pfwCSP framework as we shall show in Sec. 5.

– We next turn to an implementation and experimental validation on a diverse
collection of 20 relational verification problems, consisting of k-safety prob-
lems from Shemer et al. [50] and new co-termination and GNI problems in
Sec. 6. As far as we know, none of the existing automated tools other than
our new tool called PCSat can solve them.

In sum, Fig. 1 depicts each of these sections and how, together, they enable
relational verification. For space, extra materials are deferred to the extended
report [58].

3 Predicate Constraint Satisfaction Problems pfwCSP

As discussed in Sec. 2, CHCs are insufficient to express important relational
verification problems. In the section we introduced a generalized language of
constraints called pfwCSP. The language of constraint satisfaction problems
(CSP) permits non-Horn clauses, predicate variable terms, including those for
functional predicates and well-founded relations (pfw). We now define pfwCSP.

Let T be a (possibly many-sorted) first-order theory with the signature Σ.
The syntax of T -formulas and T -terms is:

(formulas) φ ::= X(t̃) | p(t̃) | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2
(terms) t ::= x | f(t̃)

Here, the meta-variables x and X respectively range over term and predicate
variables. The meta-variables p and f respectively denote predicate and function
symbols of Σ. We use s as a meta-variable ranging over sorts of the signature
Σ. We write ? for the sort of propositions and s1 → s2 for the sort of functions
from s1 to s2. We write ar(o) and sort(o) respectively for the arity and the
sort of a syntactic element o. A function f represents a constant if ar(f) = 0.
We write ftv(φ) and fpv(φ) respectively for the set of free term and predicate
variables that occur in φ. We write x̃ for a sequence of term variables, |x̃| for
the length of x̃, and ε for the empty sequence. We often abbreviate ¬φ1 ∨ φ2 as
φ1 ⇒ φ2. We henceforth consider only well-sorted formulas and terms. We use
ϕ as a meta-variable ranging over T -formulas without predicate variables.

We now define a pCSP C (with ordinary but without well-founded and func-
tional predicate variables) to be a finite set of clauses of the form

ϕ ∨
(∨`

i=1Xi(t̃i)
)
∨
(∨m

i=`+1 ¬Xi(t̃i)
)

(1)

where 0 ≤ ` ≤ m. We write ftv(c) for the set of free term variables of a clause
c. The set of free term variables of C is defined by ftv(C) =

⋃
c∈C ftv(c). We

regard the variables in ftv(c) as implicitly universally quantified. We write fpv(C)

8 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

for the set of free predicate variables that occur in C. A predicate substitution
σ is a finite map from predicate variables X to closed predicates of the form
λx1, . . . , xar(X).ϕ. We write σ(C) for the application of σ to C and dom(σ) for
the domain of σ. We call σ a syntactic solution for C if fpv(C) ⊆ dom(σ) and
|=
∧
σ(C). Similarly, we call a predicate interpretation ρ a semantic solution for

C if fpv(C) ⊆ dom(ρ) and ρ |=
∧
C.

Remark 1. The language pCSP generalizes over existing languages of constraints.
CHCs can be obtained as a restriction of pCSP where ` ≤ 1 in (1) for all clauses.
We can also define coCHCs as pCSP but with the restriction that m ≤ `+1 for
all clauses. A linear CHCs is a pCSP that is both CHCs and coCHCs.

We next extend pCSP to pfwCSP by adding well-foundedness and function-
ness constraints. A pfwCSP (C,K) consists of

– a finite set C of pCSP-clauses over predicate variables and
– a kinding function K that maps each predicate variable X ∈ fpv(C) to

its kind: any one of •, ⇓, or λ which respectively represent ordinary, well-
founded, and functional predicate variables.

We write ρ |= WF (X) if the interpretation ρ(X) of the predicate variable X is
well-founded, that is, sort(X) = (s̃, s̃) → ? for some s̃ and there is no infinite
sequence ṽ1, ṽ2, . . . of sequences ṽi of values of the sorts s̃ such that (ṽi, ṽi+1) ∈
ρ(X) for all i ≥ 1. We write ρ |= FN (X) if X is functional, that is, sort(X) =
(s̃, s)→ ? for some s̃ and s, and ρ |= ∀x̃ : s̃.(∃y : s.X(x̃, y))∧∀y1, y2 : s.(X(x̃, y1)∧
X(x̃, y2) ⇒ y1 = y2) holds. We call a predicate interpretation ρ a semantic
solution for (C,K) if ρ is a semantic solution of C, ρ |= WF (X) for all X such
that K(X) =⇓, and ρ |= FN (X) for all X such that K(X) = λ. The notion of
syntactic solution can be similarly generalized to pfwCSP.

Definition 1 (Satisfiability of pfwCSP). The predicate satisfiability problem
of a pfwCSP (C,K) is that of deciding whether it has a semantic solution.

Remark 2. Recall that we assume that the T -formulas ϕ in pCSP clauses do not
contain quantifiers. The assumption, however, is not a restriction for pfwCSP
because we can Skolemize quantifiers using functional predicates.

4 Relational Verification with Constraints

We now present reductions from relational verification problems to pfwCSP, thus
enabling a new route to automation of these problems. We begin with k-safety,
and then move toward liveness and non-determinism, which are thorny problems
in the relational setting. We first provide some basic definitions and notations.

Constraint-based Relational Verification 9

Programs. We consider programs P1,. . . ,Pk on variables Ṽ1,. . . ,Ṽk, respectively.
A state of the program Pi is a valuation of the variables Ṽi. We represent such
a valuation by a sequence of values ṽ such that |ṽ| = |Ṽi|. We assume that each
Pi is defined by the predicate Ti(Ṽi, Ṽi

′
) denoting its one-step transition relation

i.e., Ti(ṽ, ṽ′) implies that evaluating Pi one step from the state ṽ reaches the
state ṽ′. We also assume that there is a predicate Fi(Ṽi) that represents the
final states of the program such that Fi(ṽ) and Ti(ṽ, ṽ′) implies ṽ = ṽ′, i.e., the
program self-loops when it reaches a final state. We say that a state ṽ (multi-
step) reaches a final state ṽ′ in the evaluation of Pi, written ṽ i ṽ

′, if there
exists a non-empty finite sequence of states π such that π[1] = ṽ, π[|π|] = ṽ′,
Ti(π[j−1], π[j]) for all 1 < j ≤ |π|, and Fi(ṽ′). We write ṽ i ⊥ if there exists a
non-terminating evaluation from ṽ in Pi, i.e., if there exists an infinite sequence
of states $ such that $[1] = ṽ, Ti($[j−1], $[j]) for all 1 < j, and ¬Fi($[j]) for
all 0 < j. We note that a program may be non-deterministic, that is, Ti(ṽ, ṽ′)
and Ti(ṽ, ṽ′′) may both be true for some ṽ′ 6= ṽ′′.

4.1 k-Safety

A k-safety property is given by predicates Pre(Ṽ) and Post(Ṽ) that respectively
denote the pre and the post relations across the k-tuple.

Definition 2 (k-safety). The k-safety property verification problem is to decide
if the following holds:

∀ṽ = ṽ1, . . . , ṽk.∀ṽ′ = ṽ1
′, . . . , ṽk

′.Pre(ṽ) ∧
∧
i∈[k] ṽi i ṽi

′ ⇒ Post(ṽ′)

That is, any k-tuple of final states reachable from a k-tuple of states satisfying the
precondition satisfies the post condition. For instance, the TI-NI verification from
Sec. 2.1 is a 2-safety property where P1 and P2 are copies of the same program,
Pre states that the low inputs of the two programs are equal (i.e., x1 = x2 in the
example), and Post states that the low outputs of the two programs are equal
(i.e., y1 = y2 in the example).

We now describe a new way to pose the k-safety relational verification prob-
lem via constraints written in pfwCSP. We write [k] for the set {1, . . . , k}. We
define P+[k] = {S ⊆ [k] | S 6= ∅}. Let Ṽ = Ṽ1,. . . ,Ṽk be a k-tuple of vectors,
corresponding to the variables of the k programs.

Definition 3 (k-safety through constraints).We define pfwCSP constraints
CS be the set of following clauses:

(1) Pre(Ṽ)⇒ inv(Ṽ)

(2) inv(Ṽ) ∧
∧
i∈[k] Fi(Ṽi)⇒ Post(Ṽ)

(3) For each A ∈ P+[k],
inv(Ṽ) ∧ schA(Ṽ) ∧

∧
i∈A Ti(Ṽi, Ṽi

′
) ∧
∧
i∈[k]\A Ṽi = Ṽi

′
⇒ inv(Ṽ ′)

(4) For each A ∈ P+[k], inv(Ṽ) ∧ schA(Ṽ) ∧
∨
i∈[k] ¬Fi(Ṽi)⇒

∨
i∈A ¬Fi(Ṽi)

(5) inv(Ṽ) ∧
∨
i∈[k] ¬Fi(Ṽi)⇒

∨
A∈P+[k] schA(Ṽ).

10 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

Here, inv and schA (for each A ∈ P+[k]) are ordinary predicate variables.
Roughly, the predicate variables schA describe a scheduler. The scheduler stipu-
lates that when schA(ṽ1, . . . , ṽk) is true, each Pi such that i ∈ A takes a step from
the state ṽi while the others remain still. Note that the scheduler is semantic in
the sense that which programs are scheduled to be executed next can depend on
the current states of the programs. Clauses (1)-(3) assert that inv is an invari-
ant sufficient to prove the given safety property with the scheduler defined by
schA’s. Clauses (4) say that if an inv-satisfying state is such that the processes
in A are allowed to move and some program has not yet terminated, then at
least one process in A has not yet terminated. Clause (5) says that any state
satisfying inv has to satisfy some schA. Clauses (4) and (5) ensure the fairness
of the scheduler, that is, at least one unfinished program is scheduled to make
progress if there is an unfinished program.

Theorem 1 (Soundness and Completeness of CS). The given k-tuple of
programs satisfies the given k-safety property iff CS is satisfiable.

We note that the soundness direction crucially relies on scheduler fairness. The
completeness is with respect to semantic solutions (cf. Def. 1) and it is only “rel-
ative” with respect to syntactic solutions: a syntactic solution only exists when
the predicates of the background theory are able to express sufficient invariants
and schedulers (impossible in general for any decidable theory when the class
of programs is Turing-powerful as in our case when the background theory of
predicates is QFLIA).

It is important to note that CS is not CHCs because clause (5) has a head
disjunction. CS may be seen as a constraint-based formulation of the approach
proposed in [50]. However, their approach requires the user to provide sufficient
predicates manually and is not fully automated, while our approach can fully
automatically solve the problems by constraint solving (cf. Sec. 5).

Example 1. The formalization allows flexible scheduling. For instance, for the TI-
NI example from Sec. 2.1, our approach is able to infer the predicate substitution
that maps sch{1}, sch{2}, and sch{1,2} to λṼ .h1∧¬h2∧z1+1 = 2z2, λṼ .¬h1∧h2∧
z2 +1 = 2z1, and λṼ .(h1 ∧¬h2 ⇒ z1 = 2z2)∧ (¬h1 ∧ h2 ∧ z2 = 2z1) respectively,
where Ṽ is the list of the variables in the two program copies. The inferred
predicates stipulate that the copy with h = true is scheduled to execute the loop
two times per every loop iteration of the copy with h = false. The extended
report [58] shows the pfwCSP encoding of the example. A solution generated by
PCSat is also shown in [58].

4.2 Co-termination

Intuitively, co-termination means that if one program terminates, then a second
program must terminate [6,10]. This can also be thought of as a form of relational
termination problem.6

6 The property has also been called relative termination [31].

Constraint-based Relational Verification 11

Definition 4 (Co-Termination). The co-termination verification problem is
to decide if for all ṽ1, ṽ2 such that Pre(ṽ1, ṽ2), if ṽ1 1 ṽ′1 then ṽ2 6 2 ⊥.
Roughly, the property says that from any pair of states related by Pre, if P1

terminates, then P2 must also terminate. Note that this is an asymmetric prop-
erty. A symmetric version can be obtained by also asserting the property with
the positions of the two programs exchanged. The symmetric version implies,
assuming that there is at least one execution from any Pre-related state, that
from any pair of Pre-related states, all executions from one state terminates iff
all executions from the other one do as well. We now present an encoding of
conditional co-termination in pfwCSP.

Definition 5 (Co-termination through constraints). Let Ṽ = Ṽ1, Ṽ2. We
define pfwCSP constraints CCoT be the set of following clauses:
(1) Pre(Ṽ) ∧ fnb(Ṽ , b)⇒ inv(0, b, Ṽ)

(2) inv(d, b, Ṽ) ∧ ¬F1(Ṽ1) ∧ ¬F2(Ṽ2)⇒ (−b ≤ d ∧ d ≤ b ∧ b ≥ 0)

(3a) inv(d, b, Ṽ) ∧ schFT(d, b, Ṽ) ∧ T2(Ṽ2, Ṽ2
′
) ∧ (F1(Ṽ1) ∨ F2(Ṽ2) ∨ d′ = d − 1) ⇒

inv(d′, b, Ṽ1, Ṽ2
′
)

(3b) inv(d, b, Ṽ) ∧ schTF(d, b, Ṽ) ∧ T1(Ṽ1, Ṽ1
′
) ∧ (F1(Ṽ1) ∨ F2(Ṽ2) ∨ d′ = d + 1) ⇒

inv(d′, b, Ṽ1
′
, Ṽ2)

(3c) inv(d, b, Ṽ) ∧ schTT(d, b, Ṽ) ∧ T1(Ṽ1, Ṽ1
′
) ∧ T2(Ṽ2, Ṽ2

′
)⇒ inv(d, b, Ṽ1

′
, Ṽ2
′
)

(4a) inv(d, b, Ṽ) ∧ schFT(d, b, Ṽ) ∧ ¬F1(Ṽ1)⇒ ¬F2(Ṽ2)

(4b) inv(d, b, Ṽ) ∧ schTF(d, b, Ṽ) ∧ ¬F2(Ṽ2)⇒ ¬F1(Ṽ1)

(5) inv(d, b, Ṽ) ∧ (¬F1(Ṽ1) ∨ ¬F2(Ṽ2))⇒
∨
a∈{TT,FT,TF} scha(d, b, Ṽ)

(6) inv(d, b, Ṽ) ∧ F1(Ṽ1) ∧ ¬F2(Ṽ2) ∧ T2(Ṽ2, Ṽ2
′
)⇒ wfr(Ṽ2, Ṽ2

′
)

Here, schTT, schFT, and schTF are 2-specialization of the k-safety scheduler of
Def. 3. Clauses (3x)’s are similar to (3) of Def. 3 and assert that inv is an
invariant under the scheduler. Clauses (4x)’s and (5), like (4) and (5) of Def. 3,
are used to ensure the scheduler fairness. However, they are insufficient for co-
termination as a non-terminating copy can be scheduled indefinitely leaving the
other copy unscheduled. Clauses (1) and (2) are added to amend the issue. In
(1), fnb is a functional predicate variable that is used to select a bound b, and
(2) asserts that the difference d between the numbers of steps taken by the two
copies is within b in any state in inv when neither copy has terminated. Note
that d is initialized to 0 by (1) and properly updated in (3x)’s. Finally, by using
the well-founded predicate variable wfr, (6) asserts that if P1 has terminated,
then so must eventually P2.

Theorem 2 (Soundness and Completeness of CCoT). The given pair of
programs co-terminate iff CCoT is satisfiable.

As with Theorem 1, the soundness direction relies on scheduler fairness.

Example 2. Via the encoding, our PCSat tool is able to verify the symmetric
co-termination example from Sec. 2.1 by automatically inferring the solution
described there. For space, the concrete constraint set and solution are given in
the extended report [58].

12 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

4.3 Generalized Non-Interference

We now turn to another relational property that cannot simply be captured by
k-safety or co-termination. So-called termination-insensitive (resp. -sensitive)
generalized non-interference (resp. TI-GNI, TS-GNI) are ∀∃ hyperproperties:
from any pre-related pair of states whenever one side can take a move to a post
state, there must be a way for the other side to also move to a post state such that
the post-relation holds. As remarked in Sec. 2, verifying GNI requires reasoning
about both demonic (i.e., for all) and angelic (i.e., exists) non-determinism.

Definition 6 (TI/TS-GNI). The GNI verification problem is to decide if the
following holds. If Pre(ṽ1, ṽ2) and ṽ1 1 ṽ1

′ then (TI-GNI) (∃ṽ2′.ṽ2 2 ṽ2
′ ∧

Post(ṽ1
′, ṽ2

′)) ∨ ṽ2 2 ⊥; or (TS-GNI) ∃ṽ2′.ṽ2 2 ṽ2
′ ∧ Post(ṽ1

′, ṽ2
′).

Note that our definition is parameterized by Pre and Post . The standard GNI
definitions [40] can be obtained by letting P1 and P2 be copies of the same target
program and letting Pre be the predicate equating the low inputs of the copies
and Post be the predicate equating the low outputs of the copies.

To formalize the pfwCSP encodings of the GNI verification problems, we de-
fine a relation U2 to be one such that T2(ṽ, ṽ′)⇔ ∃r.U2(r, ṽ, ṽ

′) and U2(r, ṽ, ṽ
′)∧

U2(r, ṽ, ṽ
′′)⇒ ṽ′ = ṽ′′. Roughly, U2 is a function version of the transition relation

T2 with the extra parameter r to make the non-deterministic choices explicit.
We now show the pfwCSP encodings of TI-GNI and TS-GNI. The key idea

is to augment the encodings for k-safety and/or co-termination with functional
predicate variables and prophecy variables that respectively represent the non-
deterministic choices of the angelic side (i.e., P2) and the final outputs of the
demonic side (i.e., P1).

Definition 7 (TI-GNI through constraints).We define pfwCSP constraints
CTIGNI as CS in Def. 3 for k = 2 but with the following modifications:

(m1) The parameters representing the inputs and outputs of P1 is extended with
prophecy variables p̃ where |p̃| = |Ṽ1|. Accordingly, each occurrence of Ṽ1 is
replaced by p̃, Ṽ1, and each occurrence of Ṽ1

′
is replaced by p̃′, Ṽ1

′
.

(m2) Pre is replaced by Pre ′ which is defined by Pre ′(p̃, Ṽ1, Ṽ2) ⇔ Pre(Ṽ1, Ṽ2),
i.e., the prophecy values are unconstrained in the precondition.

(m3) F1 is replaced by F ′1 defined by F ′1(p̃, Ṽ1)⇔ F1(Ṽ1).
(m4) T1 is replaced by T ′1 defined by T ′1(p̃, Ṽ1, p̃′, Ṽ1

′
)⇔ T1(Ṽ1, Ṽ1

′
) ∧ p̃ = p̃′.

(m5) Post is replaced by Post ′ defined by Post ′(p̃, Ṽ1, Ṽ2)⇔ (p̃ = Ṽ1 ⇒ Post(Ṽ1, Ṽ2)),
i.e., if the prophecy was correct then the original post condition must hold.

(m6) Each occurrence of T2(Ṽ2, Ṽ2
′
) is replaced by fnr(p̃, Ṽ2, r)∧U2(r, Ṽ2, Ṽ2

′
) where

fnr is a functional predicate variable.

Modifications (m1)-(m5) concern prophecy variables. They are initialized ar-
bitrarily as shown in (m2), propagated unmodified through the transitions as
shown in (m4), and finally checked if they match P1’s outputs in (m5). Mod-
ification (m6) adds functional predicate variables to express the angelic non-
deterministic choices of P2. The functional predicate variables shift the onus of

Constraint-based Relational Verification 13

making the right choices to the solver’s task of discovering sufficient assignments
to them. Importantly, the functional predicate takes the prophecy variables as
parameters, thus allowing dependence on the final outputs of the demonic side.

Definition 8 (TS-GNI through constraints).We define pfwCSP constraints
CTSGNI as CCoT in Def. 5 but with modifications of Def. 7 except (m3) and (m5),
and with the following modifications:

(m3’) F1 is replaced by F ′1 defined by F ′1(p̃, Ṽ1)⇔ F1(Ṽ1) ∧ p̃ = Ṽ1.
(m5’) The clause inv(p̃, Ṽ1, Ṽ2) ∧ F ′1(p̃, Ṽ1) ∧ F2(Ṽ2)⇒ Post(Ṽ1, Ṽ2) is added.

CTSGNI is similar to CTIGNI except that it contains the difference bound and well-
foundedness constraints to handle the “co-termination” aspect of TS-GNI, i.e.,
if P1 terminates and makes an output then P2 must also be able terminate and
make a matching output. One subtle aspect of the encoding is that (m3’) modifies
the final state predicate for P1 to enforce co-termination only when the prophecy
is correct. However, it is worth noting that TS-GNI is not a conjunction of TI-
GNI and co-termination. For instance, the GNI example from Sec. 2.1 satisfies
TS-GNI but does not satisfy co-termination.

Theorem 3 (Soundess and Completeness of of TI-GNI). The given pair
of programs satisfy TI-GNI iff CTIGNI is satisfiable.

Theorem 4 (Soundess and Completeness of TS-GNI). The given pair of
programs satisfy TS-GNI iff CTSGNI is satisfiable.

The soundness directions are proven by “determinizing” the angelic choices by
solutions to the functional predicate variables and reducing the argument to
those of k-safety and co-termination. The completeness directions are proven by
“synthesizing” sufficient angelic choice functions from program executions.

Example 3. Via the encoding, our PCSat tool is able to verify the TS-GNI ex-
ample from Sec. 2.1 by automatically inferring not only the functional predicate
described there but also relational invariants and well-founded relations given
in the extended report [58]. For space, the concrete constraint set is also given
in [58].

Remark 3. The angelic non-determinism encoding can be optimized by using
head disjunctions when the non-determinism is finitary (i.e.,maxṽ|{ṽ′ | T2(ṽ, ṽ′)}|
is finite) instead of using functional predicate variables. For this, we modify
clauses (3) and (3x)’s of Def. 7 and 8 to contain multiple positive occurrences of
inv where each occurrence represents one of the finitely many possible choices.

Remark 4. Recall that we allow any program to be non-deterministic. The k-
safety and co-termination encodings treat non-determinism in all programs as
demonic, whereas the GNI encodings treat those in one program (i.e., P1) as
demonic and those in the other program (i.e., P2) as angelic. In general, an
arbitrary program can be made angelic by applying the transformation done in
the angelic side of GNI encodings (to factor out non-determinism).

14 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

5 Constraint Solving Method for pfwCSP

We describe a CEGIS-based method for finding a (syntactic) solution of the given
pfwCSP (C,K). Our method iterates the following phases until convergence.
The iteration maintains and builds a sequence σ of candidate solutions and a
sequence E of example instances where E(i) are ground clauses obtained from C by
instantiating the term variables and serve as a counterexample to the candidate
solution σ(i−1), for each i-th iteration. The iteration starts from E(1) = ∅.

Synthesis Phase: We check if (E(i),K) is unsatisfiable. If so, we stop by
returning E(i) as a genuine counterexample to the input problem (C,K). Other-
wise, we use the synthesizer STB (cf. Sec. 5.1) to find a solution σ(i) of (E(i),K),
which will be used as the next candidate solution.

Validation Phase: We check if σ(i) is a genuine solution to (C,K) by using
an SMT solver. If so, we stop by returning σ(i) as a solution. Otherwise, for each
clause c ∈ C not satisfied by σ(i), we obtain a term substitution θc such that
dom(θc) = ftv(c) and 6|= θc(σ

(i)(c)). We then update the example set by adding
a new example instance for each unsatisfied clause (i.e., E(i+1) = E(i) ∪ { θc(c) |
c ∈ C∧ 6|= σ(i)(c) }), and proceed to the next iteration.

The above procedure satisfies the usual progress property of CEGIS: discov-
ered counterexamples and candidate solutions are not discovered again in suc-
ceeding iterations. Furthermore, as discussed in Sec. 5.1, by carefully designing
the synthesizer STB by incorporating stratified CEGIS, we achieve complete-
ness in the sense of [34, 55]: if the given pfwCSP (C,K) has a syntactic solution
expressible in the stratified families of templates, a solution of the pfwCSP is
eventually found by the procedure. In Sec. 5.1, we discuss the details of the syn-
thesis phase. There, for space, we focus on the theory of quantifier-free linear
integer arithmetic (QFLIA). For space, we defer the details of the unsatisfiability
checking process to the extended report [58].

Remark 5. The implementation described in Sec. 6 contains an additional phase
called resolution phase for accelerating the convergence. There, we first apply
unit propagation repeatedly to the given E(i) to obtain positive examples E(i)+
of the form X(ṽ) and negative examples E(i)− of the form ¬X(ṽ). We then
repeatedly apply resolution principle to the clauses in the input clauses C and
the clauses E(i)+ ∪ E(i)− to obtain additional positive and negative examples.

5.1 Predicate Synthesis with Stratified Families of Templates

We describe our candidate solution synthesizer STB . STB performs a template-
based search for a solution to the given example instances. As we shall show, our
approach allows searching for assignments to all predicate variables (of all three
kinds) in the given instance which is important because satisfying assignments to
different predicate variables often inter-dependent. There, however, is a trade-off
between expressiveness and generalizability. With less expressive templates like
intervals, we may miss actual solutions. But with very expressive templates like
polyhedra, there could be many solutions, and a solution thus returned is liable

Constraint-based Relational Verification 15

Stratified Template Family for Ordinary Predicate Variables:
T •X(nd ,nc, ac, ad) , λ(x1, . . . , xar(X)).

∨nd
i=1

∧nc
j=1 ci,j,0 +

∑ar(X)
k=1 ci,j,k · xk ≥ 0

φ•X(nd ,nc, ac, ad) ,
∧nd
i=1

∧nc
j=1(

∑ar(X)
k=1 |ci,j,k| ≤ ac) ∧ |ci,j,0| ≤ ad

Stratified Template Family for Well-Founded Predicate Variables:
T⇓X(np,nl ,nc, rc, rd , dc, dd) , λ(x̃, ỹ).

∧np
i=1

∧nl
k=1 ri,k(x̃) ≥ 0 ∧ (

∨np
i=1Di(x̃))∧

(
∨np
j=1Dj(ỹ)) ∧ (

∨np
i=1Di(x̃) ∧

∧np
j=1(Dj(ỹ)⇒ DEC i,j(x̃, ỹ)))

φ⇓X(np,nl ,nc, rc, rd , dc, dd) ,
∧np
i=1

∧nl
k=1(

∑ar(X)/2
`=1 |ci,k,`| ≤ rc) ∧ |ci,k,0| ≤ rd ∧∧np

i=1

∧nc
k=1(

∑ar(X)/2
`=1 |c′i,k,`| ≤ dc) ∧ |c′i,k,0| ≤ dd

DEC i,j(x̃, ỹ) ,
∨nl
k=1(ri,k(x̃) > rj,k(ỹ) ∧

∧k−1
`=1 ri,`(x̃) ≥ rj,`(ỹ))

ri,k(x̃) , ci,k,0 +
∑ar(X)/2
`=1 ci,k,` · x` Di(x̃) ,

∧nc
k=1 c

′
i,k,0 +

∑ar(X)/2
`=1 c′i,k,` · x` ≥ 0

Stratified Template Family for Functional Predicate Variables:
TλX(nd ,nc, dc, dd , ec, ed) , λ(x̃, r).r = if D1(x̃) then e1(x̃) else if D2(x̃) then e2(x̃) · · ·

else if Dnd−1(x̃) then end−1(x̃) else end(x̃)
φλX(nd ,nc, ec, ed , dc, dd) ,

∧nd
i=1(

∑ar(X)−1
j=1 |ci,j | ≤ ec) ∧ |ci,0| ≤ ed ∧∧nd−1

i=1

∧nc
j=1(

∑ar(X)−1
k=1 |c′i,j,k| ≤ dc) ∧ |c′i,j,0| ≤ dd

ei(x̃) , ci,0 +
∑ar(X)−1
j=1 ci,j · xj Di(x̃) ,

∧nc
j=1 c

′
i,j,0 +

∑ar(X)−1
k=1 c′i,j,k · xk ≥ 0

Fig. 2. Stratified Families of Templates

to overfitting, i.e., the solution to the example instances becomes too specific
to be an actual solution to the original input clauses. [44] discusses a similar
overfitting issue in the context of grammar-based synthesis.

Our remedy to the issue is stratified families of predicate templates, inspired
by a similar approach proposed in the context of predicate abstraction with
CEGAR [34, 55]. Initially, we assign each predicate variable a less expressive
template and gradually refine it in a counterexample-guided manner: if no so-
lution exists in the current template, we generate and analyze an unsat core
to identify the parameters of the families of templates that should be updated.
The stratification of templates thus automatically pushes the template to an ex-
pressive one (e.g., polyhedra) when it needs to. Importantly, with our approach,
expressive templates are not always used but only when they should be used.

Stratified Families of Templates We have designed three stratified families
of templates shown in Fig. 2, respectively for ordinary (•), well-founded (⇓), and
functional (λ) predicate variables. First, for each ordinary predicate variable X,
we prepare the stratified family of templates T •X(nd ,nc, ac, ad) with unknowns
ci,j,k’s to be inferred and its accompanying constraint φ•X(nd ,nc, ac, ad). The
body of T •X is a DNF with affine inequalities as atoms. The parameter nd (resp.
nc) is the number of disjuncts (resp. conjuncts). The parameter ac is the upper
bound of the sum of the absolute values of coefficients ci,j,k (k > 0), and ad is
the upper bound of the absolute value of ci,j,0.

Secondly, for each functional predicate variable X, we prepare the strati-
fied family of templates T⇓X(np,nl ,nc, rc, rd , dc, dd) with unknowns ci,j,k’s and

16 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

c′i,j,k’s and its accompanying constraint φ⇓X(np,nl ,nc, rc, rd , dc, dd). T⇓X repre-
sents the well-founded relation induced by a piecewise-defined lexicographic affine
ranking function [2, 39, 39, 60, 61] where ri,j is the affine ranking function tem-
plate for the j-th lexicographic component of the i-th region specified by the
discriminator Di. The parameter np (resp. nl) is the number of regions (resp.
lexicographic components). The parameters rc, rd , dc, dd are the upper bounds
of (the sums of) the absolute values of unknowns, similar to ac and ad of T •X .
The first conjunct of T⇓X asserts that the return value of each ranking functions is
non-negative. The second and the third conjuncts assert that the discriminators
cover all relevant states. Note that discriminators may overlap, and for such over-
lapping regions, the maximum return value of the ranking functions is used. The
fourth conjunct asserts that the return value of the piecewise-defined ranking
function strictly decreases from x̃ to ỹ. Here, DEC i,j(x̃, ỹ) asserts that the re-
turn value of the lexicographic ranking function for the i-th region at x̃ is greater
than that for the j-th region at ỹ. It follows that for any substitution θ for the
unknowns in T⇓X , θ(T⇓X) represents a well-founded relation. Our implementation
PCSat uses a refined version of T⇓X shown in the extended report [58].

Finally, for each functional predicate variable X, we prepare the stratified
family of templates TλX(nd ,nc, dc, dd , ec, ed) with unknowns ci,j ’s and c′i,j,k’s
and its accompanying constraint φλF (nd ,nc, dc, dd , ec, ed). T

λ
X characterizes a

piecewise-defined affine function with discriminators D1, . . . , Dnd−1 and branch
expressions e1, . . . , end . The parameter nc is the number of conjuncts in each
discriminator. The parameters dc, dd , ec, ed are the upper bounds of (the sums
of) the absolute values of unknown, similar to ac and ad of T •X . Note that for
any substitution θ for the unknowns in TλX , θ(TλX)(x̃, r) expresses a total function
that maps x̃ to r.

Next, we give the details of the candidate solution synthesis process. Let
p̃ ∈ Zn where n is the number of parameters summed across all templates, and
let TαX(p̃) and φαX(p̃) (for α ∈ {•,⇓, λ}) project the corresponding parameters.
Each p̃ ∈ Zn induces a solution space Jp̃K , {T (p̃)[θ] | θ |= Con(p̃)} where
T (p̃)[θ] , {X 7→ θ(T

K(X)
X (p̃)) | X ∈ fpv(C)} and Con(p̃) ,

∧
X∈fpv(C) φ

K(X)
X (p̃).

Let p̃1 ≤ p̃2 be the point-wise ordering. Note that Jp̃K is a finite set for
any p̃ ∈ Zn, and p̃1 ≤ p̃2 implies Jp̃1K ⊆ Jp̃2K. We start the CEGIS process
with some small initial parameters p̃(0) (the parameters will be maintained as
a state of the CEGIS process). The synthesis phase of each iteration tries to
find a solution θ ∈ Jp̃(i)K to the given example instances (E ,K) where p̃(i) are
the current parameters. This is done by using an SMT solver for QFLIA to
find θ satisfying

∧
T (p̃(i))[θ](E) ∧ θ(Con(p̃(i))). If such θ is found, we return

T (p̃(i))[θ] as the candidate solution for the next validation phase of the CEGIS
process. Note that, by construction of the templates, the solution is guaranteed
to assign each well-founded (resp. functional) predicate variable a well-founded
relation (resp. total function). Otherwise, no solutions to the given example
instances (E ,K) can be found in Jp̃(i)K, and we update the parameters to some
p̃(i+1) > p̃(i) such that Jp̃(i+1)K contains a solution for (E ,K). Here, it is important
to do the update in a fair manner [34,55], that is, in any infinite series of updates

Constraint-based Relational Verification 17

p̃(0), p̃(1), . . . , every parameter is updated infinitely often (the details are deferred
to below). By the progress property and the fact that every Jp̃K is finite, this
ensures that every parameter is updated infinitely often in an infinite series of
CEGIS iterations. We thus obtain the following property.

Theorem 5. Our CEGIS-procedure based on stratified families of templates is
complete in the sense of [34, 55]: if there is p̃ and σ ∈ Jp̃K such that σ is a
syntactic solution to the given pfwCSP (C,K), a syntactic solution to (C,K) is
eventually found by the procedure.

Note that, while the solution space of each stratum (i.e., Jp̃(i)K) is finite, our
procedure searches the infinite solution space obtained by taking the infinite
union of the solution spaces of the template family strata (i.e.,

⋃
i∈ω Jp̃(i)K).

Remark 6. Our template-based synthesis simultaneously finds ordinary, well-
founded, and functional predicates that are mutually dependent through the
given (E ,K). This means that templates for different kinds of predicate variables
are updated in a synchronized and balanced manner, which benefits the synthe-
sis of mutually dependent witnesses for a relational property (see the extended
report [58] for examples).

Updating Parameters of Template Families via Unsat Cores. We now describe
the parameter update process. We first obtain the unsat core of the unsatisfi-
ability of

∧
T (p̃(i))[θ](E) ∧ θ(Con(p̃(i))) from the SMT solver. We then analyze

the core to obtain the parameters of template families, such as the number of
conjuncts and disjuncts, that have caused the unsatisfiability. Here, there could
be a dependency between predicate variables and in such a case our unsat core
analysis enumerates all the involved predicate variables from which we obtain
the parameters of template families to be updated. We then increment these
parameters in some fair manner, by limiting the maximum differences between
different parameters to some bounded threshold, and repeatedly solve the re-
sulting constraint until a solution is found. Thus, the parameters of stratified
families of templates are grown on-the-fly guided by the reasons for unsatisfia-
bility. We found that a careful design of parameter update strategies important
for scaling the stratified CEGIS to hard relational verification problems. The
manual tuning, however, is tiresome and suboptimal. We leave as future work
to investigate methods for automatic tuning of parameter update strategies.

6 Evaluation

To evaluate the presented verification framework, we have implemented PCSat,
a satisfiability checking tool for pfwCSP based on stratified CEGIS. PCSat sup-
ports the theory of Booleans and the quantifier-free theory of linear inequalities
over integers and rationals. The tool is implemented in OCaml, using Z3 [41]
as the backend SMT solver. We ran the tool on a diverse collection of 20 re-
lational verification problems, consisting of k-safety, co-termination, and GNI

18 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

problems. Though we have manually reduced them to pfwCSP using the pre-
sented method in Sec. 4, this process can be easily automated. The full bench-
mark set is provided in the extended report [58]. All experiments have been
conducted on 3.1GHz Intel Xeon Platinum 8000 CPU and 32 GiB RAM with
the time limit of 600 seconds.

The experimental results are summarized in Table 1. The columns “Time (s)”
and “#Iters” respectively show elapsed wall clock time in seconds and numbers
of CEGIS iterations. PCSat solved 15 verification problems fully automatically
and 5 problems labeled with the symbol † and/or ‡ semi-automatically. For the 4
problems labeled with †, we manually provided small hints for invariant synthesis
(interested readers are referred to [58]). The provided hints for all but SquareSum
are non-relational invariants that can be inferred prior to relational verification
by using a CHCs solver or an invariant synthesizer. For the 2 problems labeled
with ‡, we manually chose the initial value for the parameters of the template
family for ordinary predicate variables to reduce the elapsed time. This can be
automated by running PCSat with different initial values in parallel.

The problems DoubleSquareNI_h**, HalfSquareNI, ArrayInsert, and SquareSum

are k-safety verification problems obtained from [50] that require non-lock-step
scheduling.7 The problems DoubleSquareNI_h** are generated from Example 1
by a case analysis of the valuation for the boolean variables h1 and h2. PC-
Sat solved all the k-safety problems but SquareSum fully automatically. The tool
Pdsc proposed in [50] can verify them but requires the user to provide the
atomic predicates for expressing relational invariants and schedulers. The prob-
lems CotermIntro1 and CotermIntro2 are asymmetric co-termination problems
obtained from the symmetric problem in Example 2 and are verified by PCSat
fully automatically. The problems TS_GNI_h** are generated from Example 3
by a case analysis and are verified by PCSat with small non-relational hints.
We have also tested PCSat on various TS-GNI (SimpleTS_GNI1, SimpleTS_GNI2,
InfBranchTS_GNI) and TI-GNI problems (TI_GNI_h**) and obtained promising
results. As far as we know, no existing tools can verify these non-k-safety rela-
tional problems.

Furthermore, manual inspection of the PCSat’s output logs for the GNI
problems that required hints revealed that the functional predicate synthesis
appears to be the main bottleneck of the current version. In fact, we confirmed
that the problems can be solved in less than 10 seconds if appropriate functional
predicates for angelic non-determinism are manually provided. As future work,
we plan to investigate methods for improved functional predicate synthesis.

7 Related Work

7.1 Relational Verification

There has been substantial work on verifying relational properties. They include
program logics, type systems, or program analysis frameworks such as abstract
7 We omitted ArrayIntMod from [50] because its verification requires the theory of
arrays which the current version of PCSat does not fully support.

Constraint-based Relational Verification 19

Table 1. Experimental results of PCSat on the relational verification benchmarks

Program Time (s) #Iters Program Time (s) #Iters
DoubleSquareNI_hFT 17.762 42 HalfSquareNI 11.853 35
DoubleSquareNI_hTF 26.495 55 ArrayInsert‡ 118.671 73
DoubleSquareNI_hFF 2.944 9 SquareSum†‡ 337.596 117
DoubleSquareNI_hTT 4.055 11 SimpleTS_GNI1 5.397 14
CotermIntro1 19.322 80 SimpleTS_GNI2 8.919 26
CotermIntro2 15.871 73 InfBranchTS_GNI 2.607 4
TS_GNI_hFT† 47.083 78 TI_GNI_hFT† 4.389 16
TS_GNI_hTF 5.076 17 TI_GNI_hTF 2.277 6
TS_GNI_hFF 7.174 24 TI_GNI_hFF 2.968 6
TS_GNI_hTT† 23.495 53 TI_GNI_hTT 4.148 22

interpretation and model checking [1,5,9,19,25,52,62], program transformation
approaches such as self-composition or product programs [4,7,15,20,21,42,47,54,
57,64], and various other approaches [3,18,23,46,59]. We refer to [43] for an excel-
lent survey. However, most prior automatic approaches address only the k-safety
fragment [17,54] and cannot verify non-k-safety (actually, not even hypersafety)
properties such as co-termination, TS-NI, TI-GNI, and TS-GNI [6, 11, 40]. The
only exception that we are aware is the recent work by Coenen et al. [19] that
proposes a sound method for automatically verifying ∀∃ hyperproperties such
as GNI for finite state systems. To our knowledge, we are the first to propose a
sound-and-complete approach to automatically verifying these non-hypersafety
properties for infinite state programs.8

A key task in many relational verification methods, including ours, is the
discovery of relational invariants which relate the states of multiple program
executions. While most prior approaches are limited to fixed execution schedule
(or alignment) such as lock-step and sequential [7, 8, 20, 21, 42, 54, 57], a recent
work by Shemer et al. [50] has proposed a k-safety property verification method
that automatically infers fair schedulers sufficient to prove the goal property.
Importantly, the schedulers in their approach can be semantic in which the
choice of which program to execute can depend on the states of the programs
as opposed to the classic syntactic schedulers such as lock-step and sequential
that can only depend on the control locations. Our approach also infers such fair
semantic schedulers, and as remarked before, they enable solving instances like
doubleSquare that are difficult for previous approaches. However, [50] requires
the user to provide appropriate atomic predicates and is not fully automatic.
By contrast, our approach soundly and completely encodes the problem as a

8 However, [19] can verify (relational) temporal properties, whereas we only support
functional properties that are given by pre and post conditions of whole program
runs. We leave as future work to investigate methods for verifying relational temporal
properties of infinite state programs.

20 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

constraint satisfaction problem and fully automatically verifies hard instances
like doubleSquare by constraint solving.

Furthermore, our work extends the fair semantic scheduler synthesis to be-
yond k-safety problems like co-termination, TI-GNI and TS-GNI, in a sound
and complete manner. We note that the extensions are non-trivial and involves
delicate uses of functional predicate variables and well-founded predicate vari-
ables to ensure scheduler fairness in the presence of non-termination as well as
uses of prophecy variables and functional predicate variables to handle angelic
non-determinism. The higher-degree of automation and the extension to non-
k-safety properties are thanks to the expressive power of our novel constraint
framework pfwCSP.

7.2 Predicate Constraint Solving

Our pfwCSP solving technique builds on and generalizes a number of techniques
developed for CHCs solving as well as invariant and ranking function discovery.
Most closely related to our constraint solving method are CEGIS-based [51] and
data-driven approaches to solving CHCs [14,22,24,26,27,38,44,45,48,49,65]. As
remarked before, the new pfwCSP framework is strictly more expressive than
CHCs and extending the prior techniques to the new framework is non-trivial.

Our stratified CEGIS is inspired by the idea of stratified languages of predi-
cates proposed in the context of predicate abstraction with CEGAR [34, 55]. It
is also similar in spirit to the work by Padhi et al. [44], but they use a stratified
family of grammars. Also none of these prior works use unsat cores for updating
the language/grammar stratum, synthesize well-founded relations and functional
predicates, or support non-Horn clauses.

Our class of pfwCSP constraints is related to existentially-quantified Horn
clauses (E-CHCs) introduced by Beyene et al. [12]. E-CHCs does not have
non-Horn clauses or functional predicate variables. However, it has disjunc-
tive well-foundedness constraints which are similar to our well-founded predicate
variables. Also, existential quantifiers can be used to encode head disjunctions
and functional predicates. We conjecture that pfwCSP and E-CHCs are inter-
reducible, but it is not trivial to fill the gap. Also, inter-reducibility is a desirable
feature: different formats may have different benefits. For relational verification,
as we have shown, pfwCSP enables direct sound-and-complete encodings of the
problems. For instance, head disjunctions allow direct encoding of scheduler
fairness and finitary angelic non-determinism (cf. Remark 3). And, functional
predicate variables can be explicitly given necessary-and-sufficient parameters
to encode angelic non-determinism and difference bounds for ensuring scheduler
fairness in the presence of non-termination. The tight encodings also lead to
reduction in search space and benefited the constraint solving.

8 Conclusion

We have introduced the class pfwCSP of predicate constraint satisfaction prob-
lems that generalizes CHCs with arbitrary clauses, well-foundedness constraints,

Constraint-based Relational Verification 21

and functionality constraints. We have then established a program verification
framework based on pfwCSP by showing that (1) pfwCSP can soundly-and-
completely encode various classes of relational problems of infinite-state non-
deterministic programs, including hard instances of k-safety, co-termination,
and termination-sensitive generalized non-interference that benefit from state-
dependent scheduling/alignment (Theorems 1–4), and (2) existing CHCs solving
and invariants/ranking function synthesis techniques can be adopted to pfwCSP
solving and further improved with the idea of stratified CEGIS for simultane-
ously achieving completeness (Theorem 5) and practical effectiveness.

In future work we plan to investigate ways to improve functional predicate
synthesis, automatic tuning of parameter update strategies for constraint solving,
and whether a constraint-based approach (and the techniques presented in the
present paper) can be extended to reason about relational temporal properties
such as the ones expressed in hyper temporal logics [16,25].

Acknowledgments. We thank the anonymous reviewers for their suggestions.
This work was supported by ONR grant # N00014-17-1-2787, JST ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603), and
JSPS KAKENHI Grant Numbers 17H01720, 18K19787, 19H04084, 20H04162,
20H05703, and 20K20625.

References

1. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A relational logic for
higher-order programs. J. Funct. Program. 29 (2019)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: SAS ’10. pp.
117–133. Springer (2010)

3. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: De-
composition instead of self-composition for proving the absence of timing channels.
In: PLDI (2017)

4. Asada, K., Sato, R., Kobayashi, N.: Verifying relational properties of functional
programs by first-order refinement. In: PEPM (2015)

5. Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting se-
mantics and its application to static analysis of information flow. In: POPL (2017)

6. Barthe, G.: An introduction to relational program verification (2020)
7. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.

In: FM (2011)
8. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.

In: CSFW (2004)
9. Benton, N.: Simple relational correctness proofs for static analyses and program

transformations. In: POPL (2004)
10. Beringer, L.: Relational bytecode correlations. J. Log. Alg. Meth. Pro. 79(7) (2010)
11. Beringer, L., Hofmann, M.: Secure information flow and program logics. Arch.

Formal Proofs (2008)
12. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn

clauses. In: CAV (2013)

22 Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

13. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II: Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday (2015)

14. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: TACAS (2018)

15. Churchill, B.R., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment
for equivalence checking. In: PLDI (2019)

16. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: POST (2014)

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF (2008)
18. Clochard, M., Marché, C., Paskevich, A.: Deductive verification with ghost moni-

tors. PACMPL 4(POPL) (2020)
19. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:

CAV (2019)
20. Ádám Darvas, Hähnle, R., Sands, D.: A theorem proving approach to analysis of

secure information flow. In: SPC (2005)
21. Eilers, M., Müller, P., Hitz, S.: Modular product programs. TOPLAS 42(1) (2020)
22. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE learn-

ing for synthesizing invariants and contracts. PACMPL 2(OOPSLA) (2018)
23. Farzan, A., Vandikas, A.: Automated hypersafety verification. In: CAV (2019)
24. Fedyukovich, G., Zhang, Y., Gupta, A.: Syntax-guided termination analysis. In:

CAV (2018)
25. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL

and HyperCTL∗. In: CAV (2015)
26. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for

learning invariants. In: CAV (2014)
27. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision

trees and implication counterexamples. In: POPL (2016)
28. Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using

extremal counterexamples. In: PLDI (2015)
29. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-

ware verifiers from proof rules. In: PLDI (2012)
30. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification

framework. In: CAV (2015)
31. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-

paring programs using automated theorem provers. In: CADE (2013)
32. Hojjat, H., Rümmer, P.: The Eldarica horn solver. In: FMCAD (2018)
33. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: verifying functional programs

using abstract interpreters. In: CAV (2011)
34. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-

ment. In: TACAS (2006)
35. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A framework for veri-

fying Java programs. In: CAV (2016)
36. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-

order model checking. In: PLDI (2011)
37. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive

programs. In: CAV (2014)
38. Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. CoRR

abs/1501.04725 (2015)
39. Leike, J., Heizmann, M.: Ranking templates for linear loops. LMCS 11(1) (2015)

Constraint-based Relational Verification 23

40. McCullough, D.: Noninterference and the composability of security properties. In:
SP (1988)

41. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
42. Naumann, D.A.: From coupling relations to mated invariants for checking infor-

mation flow. In: ESORICS (2006)
43. Naumann, D.A.: Thirty-seven years of relational hoare logic: remarks on its prin-

ciples and history. CoRR abs/2007.06421 (2020)
44. Padhi, S., Millstein, T.D., Nori, A.V., Sharma, R.: Overfitting in synthesis: Theory

and practice. In: CAV (2019)
45. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with

learned features. In: PLDI (2016)
46. Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in re-

lational verification. In: CAV (2018)
47. Reynolds, J.C.: The craft of programming. Prentice Hall (1981)
48. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data

driven approach for algebraic loop invariants. In: ESOP (2013)
49. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-

ing geometric concepts. In: SAS (2013)
50. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-

tion. In: CAV (2019)
51. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial

sketching for finite programs. In: ASPLOS (2006)
52. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:

PLDI (2016)
53. Terauchi, T.: Dependent types from counterexamples. In: POPL (2010)
54. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: SAS

(2005)
55. Terauchi, T., Unno, H.: Relaxed stratification: A new approach to practical com-

plete predicate refinement. In: ESOP (2015)
56. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: PPDP

(2009)
57. Unno, H., Kobayashi, N., Yonezawa, A.: Combining type-based analysis and model

checking for finding counterexamples against non-interference. In: PLAS (2006)
58. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. Full

version, available from http://www.cs.tsukuba.ac.jp/~uhiro/ (2021)
59. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.

In: CAV (2017)
60. Urban, C.: The abstract domain of segmented ranking functions. In: SAS (2013)
61. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.

In: ESOP (2014)
62. Volpano, D.M., Irvine, C., Smith, G.: A sound type system for secure flow analysis.

J. Comp. Sec. 4(2-3) (1996)
63. Volpano, D.M., Smith, G.: Eliminating covert flows with minimum typings. In:

CSFW (1997)
64. Zaks, A., Pnueli, A.: CoVaC: Compiler validation by program analysis of the cross-

product. In: FM (2008)
65. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI (2018)
66. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: ICFP (2015)

http://www.cs.tsukuba.ac.jp/~uhiro/

	Constraint-based Relational Verification

