
Transactional Boosting: A Methodology for
Highly-Concurrent Transactional Objects

Maurice Herlihy Eric Koskinen

Computer Science Department, Brown University

{mph,ejk}@cs.brown.edu

Abstract

We describe a methodology for transforming a large class of
highly-concurrent linearizable objects into highly-concurrent trans-
actional objects. As long as the linearizable implementation satis-
fies certain regularity properties (informally, that every method has
an inverse), we define a simple wrapper for the linearizable im-
plementation that guarantees that concurrent transactions without
inherent conflicts can synchronize at the same granularity as the
original linearizable implementation.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel Programming; D.3.3
[Programming Languages]: Language Constructs and Features
– Frameworks; Concurrent programming structures; E.1 [Data
Structures]: Distributed data structures; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms Algorithms, Languages, Theory

Keywords Transactional Boosting, non-blocking algorithms, ab-
stract locks, transactional memory, commutativity

1. Introduction

Software Transactional Memory (STM) has emerged as an alterna-
tive to traditional mutual exclusion primitives such as monitors and
locks, which scale poorly and do not compose cleanly. In an STM
system, programmers organize activities as transactions, which are
executed atomically: steps of two different transactions do not ap-
pear to be interleaved. A transaction may commit, making its effects
appear to take place atomically, or it may abort, making its effects
appear not to have taken place at all.
To our knowledge, all transactional memory systems, both hard-

ware and software, synchronize on the basis of read/write conflicts.
As a transaction executes, it records the locations (or objects) it
read in a read set, and the memory locations (or objects) it wrote
in a write set. Two transactions conflict if one transaction’s read
or write set intersects the other’s write set. Conflicting transactions
cannot both commit. Conflict detection can be eager (detected be-
fore it occurs) or lazy (detected afterwards). Conflict resolution (de-
ciding which transactions to abort) can be implemented in a variety
of ways.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’08, February 20–23, 2008, Salt Lake City, Utah, USA.
Copyright c© 2008 ACM 978-1-59593-960-9/08/0002. . . $5.00

Synchronizing via read/write conflicts has one substantial ad-
vantage: it can be done automatically without programmer partici-
pation. It also has a substantial disadvantage: it can severely and un-
necessarily restrict concurrency for certain shared objects. If these
objects are subject to high levels of contention (that is, they are
“hot-spots”), then the performance of the system as a whole may
suffer.
Here is a simple example. Consider a mutable set of integers

that provides add(x), remove(x) and contains(x) methods with
the obvious meanings. Suppose we implement the set as a sorted
linked list in the usual way. Each list node has two fields, an integer
value and a node reference next. List nodes are sorted by value,
and values are not duplicated. Integer x is in the set if and only if
a list node has value field x. The add(x) method reads along the
list until it encounters the largest value less than x. Assuming x is
absent, it creates a node to hold x, and links that node into the list.
Consider a set whose state is {1, 3, 5}. Transaction A is about

to add 2 to the set and transactionB is about to add 4. Since neither
transaction’s pending method call depends on the other’s, there is
no inherent reason why they cannot run concurrently. Nevertheless,
calls to add(2) and add(4) do have read/write conflicts in the
list implementation, because no matter how A and B’s steps are
interleaved, one must write to a node read by the other. Unlike
conflicts between short-term locks, where the delay is typically
bounded by a statically-defined critical section, if transaction A is
blocked by B, then A is blocked while B completes an arbitrarily
long sequence of steps.
By contrast, a high level of concurrency can be realized in

a lock-based list implementation such as lock coupling [2]. All
critical sections are short-lived, and multiple threads can traverse
the list concurrently. Moreover, there also exist well-known lock-
free list implementations [20] that provide even more fine-grained
concurrency, relying only on individual compareAndSet() calls for
synchronization.
Several “escape” mechanisms have been proposed to address

the limitations of STM concurrency control based on read/write
conflicts. For example, open nested transactions [22] (discussed in
more detail later) permit a transaction to commit the effects of cer-
tain nested transactions while the parent transaction is still running.
Unfortunately, lock-coupling’s critical sections do not correspond
naturally to properly-nested sub-transactions. Lock coupling can be
emulated using an early release mechanism that allows a transac-
tion to drop designated locations from its read set [13], but it is
difficult to specify precisely when early release can be used safely,
and the technique seems to have limited applicability. We are not
aware of any prior escape mechanism that approaches the level of
concurrency provided by common lock-free data structures.
We are left in the uncomfortable position that well-known and

efficient data structures can easily be made concurrent in standard
non-transactional models, but appear to be inherently sequential in

all known STM models. If transactional synchronization is to gain
wide acceptance, however, it must support roughly the the same
level of concurrency as state-of-the-art lock-based and lock-free
algorithms, among transactions without real data dependencies.
This challenge has two levels: transaction-level and thread-level.
At the coarse-grained, transactional level, a transaction adding 2 to
the set should not have to wait until a transaction adding 4 to the
same set completes. Equally important, at the fine-grained thread
level, the concurrent calls should be able to execute at the same
degree of interleaving as the best existing lock-based or lock-free
algorithms.
This paper introduces transactional boosting, a methodology

for transforming a large class of highly-concurrent linearizable ob-
jects into highly-concurrent transactional objects. We describe how
to transform a highly-concurrent linearizable base object, imple-
mented without any notion of transactions, into an equally concur-
rent transactional object.
Transactional boosting treats each base object as a black box. It

requires only that the object provide a specification characterizing
its abstract state (for example, it is a set of integers), and how its
methods affect the state (for example, add(x) ensures that x is
in the set). Transactional boosting also requires certain regularity
conditions (basically, that methods have inverses) which we will
discuss later.
Transactional boosting complements, but does not completely

replace conventional read/write synchronization and recovery. We
envision using boosting to implement libraries of highly-concurrent
transactional objects that might be synchronization hot-spots, while
ad-hoc user code can be protected by conventional means.
This paper makes the following contributions:

• To the best of our knowledge, transactional boosting is the first
STM technique that relies on object semantics to determine
conflict and recovery.

• Because linearizable base objects are treated as black boxes,
transactional boosting allows STMs to exploit the consider-
able work and ingenuity that has gone into libraries such as
java.util .concurrent.

• Because we provide a precise characterization of how to use
the technique correctly, transactional boosting avoids the dead-
lock and information leakage pitfalls that arise in open nested
transactions [22].

• We identify and formally characterize an important class of dis-
posable method calls whose properties can be exploited to pro-
vide novel transactional approaches to semaphores, reference
counts, free-storage management, explicit privatization, and re-
lated problems.

• Preliminary experimental evidence suggests that transactional
boosting performs well on simple benchmarks, primarily be-
cause it performs both conflict detection and logging at the
granularity of entire method calls, not individual memory ac-
cesses. Moreover, the number of aborted transactions (and
wasted work) is substantially lower.

It must be emphasized that all of the mechanisms we deploy orig-
inate, in one form or another, in the database literature from the
70s and 80s. Our contribution is to adapt these techniques to soft-
ware transactional memory, providing more effective solutions to
important STM problems than prior proposals.

2. Software Transactional Memory

We assume an STM where transactions can be serialized in the
order they commit, a property called dynamic atomicity [30]. For
brevity, we assume for now that transactions are not nested. We re-

quire the ability to register user-defined handlers called when trans-
actions commit or abort (as provided by DSTM2 [12] and SXM
[1]). We now describe our methodology in more detail, postponing
formal definitions to Section 5.
Any transactional object must solve two tasks: synchronization

and recovery. Synchronization requires detecting when transac-
tions conflict, and recovery requires discarding speculative changes
when a transaction aborts.
The specification for a linearizable base object defines an ab-

stract state (such as a set of integers), and a concrete state (such as a
linked list). Each method is usually specified by a precondition (de-
scribing the object’s abstract state before invoking the method) and
a postcondition, describing the object’s abstract state afterwards, as
well as the method’s return value.
Informally, two method invocations commute if applying them

in either order leaves the object in the same state and returns the
same response. In a Set, for example, add(x) commutes with
add(y) if x and y are distinct. This commutativity property is the
basis of how transactional boosting performs conflict detection.
We define an abstract lock [22] associated with each invoca-

tion of a boosted object. Two abstract locks conflict if their invoca-
tions do not commute. Abstract locks ensure that non-commutative
method calls never occur concurrently. Before a transaction calls a
method, it must acquire that method’s abstract lock. The caller is
delayed while any other transaction holds a conflicting lock (time-
outs avoid deadlock). Once it acquires the lock, the transaction
makes the call, relying on the base linearizable object implementa-
tion to take care of thread-level synchronization. In the integer set
example, the abstract locks for add(x) and add(y) do not conflict
when x and y are distinct, so these calls can proceed in parallel.
A method call m has inverse m′ if applying m′ immediately

after m undoes the effects of m. For example, a method call that
adds x to a set not containing x has as inverse the method call that
removes x from the set. A method call that adds x to a set already
containing x has a trivial inverse, since the set’s state is unchanged.
When inverses are known, recovery can be done at the granular-

ity of method calls. As a transaction executes, it logs an inverse for
each method call in a thread-local log. If the transaction commits,
the log is discarded, and the transaction’s locks are released. How-
ever, if the transaction aborts, the transaction revisits the log entries
in reverse order executing each inverse. (A transaction that added
x to the set would call remove(x).) When every inverse has been
executed, the transaction releases its locks.
Sometimes it is convenient to delay certain method calls un-

til after a transaction commits or aborts. For example, consider an
object that generates unique IDs for transactions. The object’s ab-
stract state is the pool of unused IDs. It provides an assignID()
method that returns an ID not currently in use, removing it from
the pool, and a releaseID (x) method that returns ID x to the pool.
Any two assignID() calls that return distinct IDs commute, and a
releaseID (x) call commutes with every call except an assignID()
call that returns x. As a result, if a transaction that obtains x aborts,
we can postpone returning x to the pool for arbitrarily long, per-
haps forever. For example, if the ID generator is implemented as
a counter, then it is sensible never to return x to the pool. We call
these disposable method calls.
There are other examples of disposable methods. One can im-

plement a transactional semaphore that decrements a counter im-
mediately, blocking while the counter value is zero, but postpones
incrementing the counter until the calling transaction commits. Ref-
erence counts would follow a dual strategy: the reference count is
incremented immediately, but decremented lazily after the transac-
tion commits. (When an object’s reference count is zero, its space
can be freed.) Reference counter decrements can also be postponed,
allowing deallocation to be done in batches. Similar disposability

tradeoffs apply to transactional malloc() and free (), and counters
used to manage “privatization” of objects shared by transactional
and non-transactional threads.
A boosted object can also be accessed outside of a transaction,

as long as the thread acquires the appropriate abstract locks. Ac-
cessing a boosted object outside of a transaction does not prevent
other transactions from accessing the same object. However, ab-
stract locks ensure that all transactional operations which do not
commute with the non-transactional operations are delayed until
the non-transactional thread releases the abstract lock. By contrast,
external access is difficult in traditional STM implementations be-
cause non-transactional threads modify memory without acquiring
locks, and their effects cannot be aborted. This is precisely the pri-
vatization problem discussed in [28].
Transactional boosting is not a panacea. It is limited to objects

(1) whose abstract semantics are known, (2) where commutative
method calls can be identified, and (3) for which reasonably effi-
cient inverses either exist or can be composed from existing meth-
ods. This methodology seems particularly well suited to collection
classes, because it is usually easy to identify inverses (for exam-
ple, the inverse of removing x is to put it back), and many method
calls commute (for example, adding or removing x commutes with
adding or removing y, for x 6= y).
Further, transactional boosting supports a clean separation be-

tween low-level thread synchronization, which is the responsibil-
ity of the underlying linearizable object implementation, and high-
level transactional synchronization, which is handled by the ab-
stract locks and undo log. Non-conflicting concurrent transactions
synchronize at the level of the linearizable base object, implying
for example, that if the base object is non-blocking for concur-
rent threads, then it is non-blocking for concurrent non-conflicting
transactions. No prior STM technique can achieve this kind of fine-
grained thread-level parallelism.

3. Examples

We now consider some examples illustrating how highly-concurrent
linearizable data structures can be adapted to provide the same fine-
grained thread-level concurrency in transactional systems. Our pre-
sentation is informal, postponing more precise definitions to Sec-
tion 5.
For each example we provide a specification, such as that of

the Set in Figure 1. We use the notation method(v)/r to indicate
the invocation of method with argument v and response r. In
some cases the response is inconsequential to commutativity and
is denoted and void method calls are simply denoted method(v).
Finally, we use the infix symbol⇔ to mean that its two arguments
commute, and< when they do not.

3.1 Sets

A Set is a collection of items without duplicates. Like the in-
teger set described above, a Set provides add(x), remove(x),
and contains(x) methods. A call to add() or remove() returns
a Boolean indicating whether the set was modified. Each of these
calls has an inverse. A remove(x) call that returns true has in-
verse add(x), and vice-versa. Note that the inverse of a call often
depends on its result: the inverse to a remove(x) call that returns
false is vacuous.
Many calls commute: either order yields the same results and

produces the same final state. For example, consider a set in state
{5, 16, 29}. If we call add(3) and remove(29) in either order, both
return true, and the set ends up in state {3, 5, 16}. Transactional
boosting allows transactions to call commutative methods without
blocking, independently of how the set is actually implemented. If
either transaction aborts, the inverse method calls will be applied,

Set Specification

Method Inverse

add(x)/false noop()
add(x)/true remove(x)/true
remove(x)/false noop()
remove(x)/true add(x)/true
contains(x)/ noop()

Commutativity
insert (x)/ ⇔ insert (y)/ , x 6= y

remove(x)/ ⇔ remove(y)/ , x 6= y
insert (x)/ ⇔ remove(y)/ , x 6= y

add(x)/false⇔ remove(x)/false⇔ contains(x)/

Figure 1. Specification of a Set

1 public class SkipListKey {
2 ConcurrentSkipListSet<Integer> list ;
3 LockKey lock;
4 ...
5 public boolean add(final int v) {
6 lock . lock(v);
7 boolean result = list .add(v);
8 if (result) {
9 Thread.onAbort(new Runnable() {
10 public void run() { list .remove(v);}}
11);
12 }
13 return result ;
14 }
15 ...
16 }

Figure 2. The SkipListKey class

undoing the aborted transaction’s changes to the Set’s abstract
state.
Figure 1 summarizes Setmethods’ inverses and commutativity.

Indeed any call to add(x), remove(y), or contains(z) commutes
with the others so long as they have distinct arguments.
Skip List Implementation A skip list [23] is linked list in

which each node has a set of short-cut references to later nodes in
the list. A skip list is an attractive way to implement a Set because it
provides logarithmic-time add(), remove(), and contains() meth-
ods.
To illustrate our claim that we can treat base linearizable ob-

jects as black boxes, we describe how to transactionally-boost the
ConcurrentSkipListSet class from the java.util .concurrent li-
brary. This class is a very efficient, but complicated, lock-free skip
list. We will show how to transform this highly-concurrent lineariz-
able library class into an equally concurrent transactional library
class without the need to understand how the linearizable object is
implemented.
Figure 2 shows part of the SkipListKey class, a transac-

tional Set implementation that is constructed by boosting the
ConcurrentSkipListSet object using a LockKey for synchroniza-
tion. For brevity, we focus on implementing a set of integers,
called keys. Before we describe the implementation of the boosted
ConcurrentSkipListSet class, we consider some utility classes.
The LockKey class, as shown in Figure 3, associates an abstract

lock with each key. Key-based locking may block commutative
calls (for example, two calls to add(x) when x is in the set), but
it provides enough concurrency for practical purposes. (Naturally,
transactional boosting does not require the programmer to exploit
all commutative methods.) This class’s commit and abort handlers
release the locks (on abort, after replaying the log). The lock’s

17 public class LockKey {
18 ConcurrentHashMap<Integer,Lock> map;
19 public LockKey() {
20 map = new ConcurrentHashMap<Integer,Lock>();
21 }
22 public void lock(int key) {
23 Lock lock = map.get(key);
24 if (lock == null) {
25 Lock newLock = new ReentrantLock();
26 Lock oldLock = map.putIfAbsent(key, newLock);
27 lock = (oldLock == null) ? newLock : oldLock;
28 }
29 if (LockSet.add(lock)) {
30 if (! lock .tryLock(LOCK TIMEOUT,
31 TimeUnit.MILLISECONDS);) {
32 lockSet .remove(lock);
33 Thread.getTransaction (). abort ();
34 throw new AbortedException();
35 }
36 }
37 }
38 ...
39 }

Figure 3. The LockKey class

map field is a ConcurrentHashMap (Line 18) that maps integers
to locks.1 The lock(k) method first checks whether there exists a
lock for this key, and if not, creates one (Lines 23-28).
Each transaction has a thread-local LockSet tracking the locks

it has acquired that must be released when the transaction commits
or aborts. The transaction must register commit and abort handlers
instructing the STM to release all locks (after replaying the log, if
necessary). The transaction tests whether it already has that lock
(Line 29). If so, nothing more needs to be done. Otherwise, it tries
to acquire the lock (Line 31). If the lock attempt times out, it aborts
the transaction (Lines 31-35).
In the boosted skip list shown in Figure 2, an add(v) call first

acquires the lock for v (Line 6), and then calls the linearizable base
object’s add(v) method (Line 7). If the return value indicates that
the base object’s state has changed, then the caller registers an abort
handler to call the inverse method (Line 8). All acquired abstract
locks are automatically released when the transaction commits or
aborts.

3.2 Priority Queues

A priority queue (PQueue) is a collection of keys, where the
domain of keys has a natural total order. Unlike Sets, PQueues
may include duplicate keys. A priority queue provides an add(x)
method that adds x to the collection, a removeMin() method that
returns and removes the least key in the collection, and a min()
method that returns but does not remove the least key.
Priority queue methods and their inverses are listed in Figure 4.

The inverse for a removeMin() call that returns x is just add(x). In
most linearizable heap implementations, removing x and adding it
again may cause the internal structure of the heap to be restructured,
but such changes do not cause synchronization conflicts because
the PQueue’s abstract set is unchanged. The min() method does
not change the queue’s state, and needs no inverse.
Most priority queue classes do not provide an inverse to add(x).

Nevertheless, it is relatively easy to synthesize one. We create a
simple Holder class containing the key and a Boolean deleted

1We use maps and locks from the Java concurrency packages.

Priority Queue Specification

Method Inverse

removeMin()/x add(x)/
min()/x noop()
add(x)/ addInverse(x)/

Commutativity

add(x)/ ⇔ add(y)/
removeMin()/x ⇔ add(y)/ , x ≤ y

min()/x ⇔ min()/x

Figure 4. Specification of a Priority Queue

40 public class HeapRW {
41 ConcurrentHeap<Holder> heap;
42 LockRW lock;
43 public void add(int item) {
44 lock .readLock();
45 heap.add(new Holder(item));
46 Thread.onAbort(new Runnable() {
47 public void run() {holder . deleted = true;}
48 });
49 }
50 public int removeMin() {
51 Holder holder ;
52 lock .writeLock ();
53 do {
54 holder = heap.removeMin();
55 } while (holder . deleted);
56 if (holder != null) {
57 Thread.onAbort(new Runnable() {
58 public void run() { heap.add(holder); }
59 });
60 }
61 return holder . value ;
62 }

Figure 5. The HeapRW class

field, initially false.Holders are ordered by their key values. Instead
of adding the key to the PQueue, we add its holder. To undo the
effects of an add() call, the transaction sets that Holder’s deleted
field to true, leaving the Holder in the queue. We change the
transactional removeMin() method to discard any deleted records
returned by the linearizable base object’s removeMin(). (We will
show an example later.)
All add() calls commute. Additionally, removeMin()/x com-

mutes with add(y) if x ≤ y. Here too, commutativity depends on
both method call arguments and results.
Heap Implementation Priority queues are often imple-

mented as heaps, which are binary trees where each item in the
tree is less than its descendants. We implemented the lineariz-
able concurrent heap implementation due to Hunt et al. [16]. The
removeMin() method removes the root and re-balances the tree,
while add(x) places the new value at a leaf, and then “percolates”
the value up the tree. This implementation uses fine-grained locks.
(Because locks are not nested, this algorithm is not a good candi-
date for open nested transactions.)
Figure 5 shows part of the boosted heap implementation. The

heap field (Line 41) is the base linearizable heap, and the lock
field (Line 42) is a two-phase readers-writers lock. The readLock()
method acquires the lock in shared mode, and writeLock() in ex-
clusive mode. All such locks are released when the transaction
commits or aborts. Each add() call acquires a shared-mode lock
(Line 44), relying on the base object’s thread-level synchroniza-
tion to coordinate concurrent add() calls. As described earlier, the

add() method does not add the key directly to the base heap, but
instead creates a Holder containing the key and a Boolean deleted
flag (Line 45). For recovery, it logs a call to mark that key’s Holder
as deleted (Line 46).

63 public class BlockingQueue<T> {
64 BlockingDeque<T> queue;
65 TSemaphore full; // block if full
66 TSemaphore empty; // block if empty
67 public BlockingQueue(int capacity) {
68 queue = new LinkedBlockingDeque<T>(capacity);
69 full = new TSemaphore(capacity);
70 empty = new TSemaphore(0);
71 }
72 public void offer (final T value) {
73 full . acquire ();
74 queue. offerLast (value);
75 empty. release ();
76 Thread.onAbort(new Runnable() {
77 public void run() {queue.takeLast ();}
78 };
79 }
80 public T take() {
81 empty.acquire ();
82 T result = queue.takeFirst ();
83 full . release ();
84 Thread.onAbort(new Runnable() {
85 public void run() { queue. offerFirst (result); }
86 };
87 return result ;
88 }
89 }

Figure 6. The BlockingQueue class

3.3 Pipelining

Pipelining is a well-established way to achieve concurrency in cer-
tain applications. Algorithms employing pipelining are common in
areas such as networking or graphics. In typical pipelined appli-
cations, one thread (or transaction) is in charge of each stage of
the pipeline. Because different pipeline stages may need varying
amounts of time, threads communicate by bounded queues called
buffers.
Transactional pipelining introduces the need for conditional

synchronization: a transaction that encounters an empty (or full)
buffer should block until that buffer becomes non-empty (or non-
full). The need for conditional synchronization implies that not all
existing STMs support pipelining.
We now consider the BlockingQueue methods and their in-

verses. Following Java conventions, the BlockingQueue class pro-
vides two methods: offer () enqueues a work item on a queue,
while take() dequeues a work item. If the queue is full, how-
ever, offer () blocks until there is room, and if the queue is
empty, take() blocks until a work item is available. Because
BlockingQueue does not provide inverses, we take as linearizable
base class a blocking double-ended queue (BlockingDEQueue)
taken from java.util .concurrent. This class provides the methods
offerFirst (x), offerLast (x), takeFirst (), and takeLast(). A
transactional offer (x) call results in a linearizable offerFirst (x)
call, with inverse takeFirst ().
Because BlockingQueue objects are shared by pairs of transac-

tions, of which one repeatedly calls offer (), and the other repeat-
edly calls take(), we care only about commutativity between these
two methods. Here, commutativity depends on the queue’s abstract
state: offer () commutes with take() if and only if the buffer is
non-empty. The full pipeline specification is given in the Technical
Report [11].

Unique ID Generator Specification

Method Inverse Post-Abort

assignID()/x noop() releaseID (x)/

Commutativity
assignID()/x ⇔ assignID()/y x 6= y

assignID()/x < assignID()/x

Figure 7. Specification of a Unique ID Generator

Pipeline Implementation To detect when BlockingQueue
methods within a pipeline can proceed in parallel, we introduce a
transactional semaphore class (TSemaphore) to mirror the queue’s
committed state. Figure 6 shows the BlockingQueue implemen-
tation. It uses two transactional semaphores: the full semaphore
blocks the caller when the queue is full by counting the num-
ber of empty slots. It is initially set to the queue capacity (Line
69). The empty semaphore blocks the caller while the queue is
empty by counting the number of items in the queue. It is ini-
tially set to zero (Line 70). As noted above, the acquire() method,
which decrements the semaphore, takes effect immediately, block-
ing the caller while the semaphore’s committed state is zero. The
release ()method is disposable: it takes effect only when the trans-
action commits. We discuss another example of disposable meth-
ods in the next subsection. Note also that transactional semaphores
cannot be implemented by conventional read/write synchroniza-
tion: they require boosting to avoid deadlock.
The offer () method decrements the full semaphore before

calling the base queue’s offerLast () method (Line 73). When
the decrement returns, there is room. After placing the item in
the base queue, offer () increments the empty semaphore (Line
75), ensuring that the item will become available after the transac-
tion commits. The take() method increments and decrements the
semaphores in the opposite order.

3.4 Unique Identifiers

Generating unique IDs is a well-known problem for STMs based
on read/write conflicts. The obvious approach, incrementing a
shared counter, introduces false read/write conflicts. Under trans-
actional boosting, we would define an ID generator class that pro-
vides an assignID() method that returns an ID distinct from any
other ID currently in use. Note that assignID()/x commutes with
assignID()/y for x 6= y.
If a thread aborts after obtaining ID x from assignID() then,

strictly speaking, we should put x back by calling releaseID (x),
which returns x to the pool of unused IDs. Nevertheless, release
is disposable: we can postpone putting x back (perhaps forever).
As long as x is assigned, no transaction can observe (by calling
assignID()) whether x is in use. Figure 7 shows the commutativity
specification for a unique ID generator. Transactional boosting not
only permits a transactional unique ID generator to be implemented
as a getAndAdd() counter, it provides a precise explanation as to
why this implementation is correct.

4. Evaluation

We now describe some experiments testing the performance of
transactional boosting.
Stanford STAMP Benchmarks We modified two of the

Stanford STAMP benchmarks [5] (written in C) to use boosting.
The vacation benchmark simulates a travel reservation system in
which client threads interact with a database consisting of a col-
lection of red-black trees. In our transactionally-boosted red-black
tree implementation, methods synchronize by short-term mutual
exclusion locks, and each key is assigned its own two-phase trans-

0

1

2

3

vacation-lo vacation-hi kmeans-lo kmeans-hi

TL2

Boosted

Figure 8. Throughput for boosted STAMP benchmarks normal-
ized against the throughput of conventional TL2, which maintains
shadow copies.

actional lock by hashing into an array of locks. Both long and
short-term locks are test-and-test-and-set spin locks.
The kmeans benchmark assigns objects to one of k clusters

based on a similarity function. Adding an object to one cluster
commutes with adding an object to a different cluster. We changed
fewer than 15 lines of code to boost this algorithm, using short-term
mutual exclusion locks and two-phase transactional locks.
Figure 8 shows the normalized throughput of four STAMP

benchmark tests: vacation with low and high contention2 and
kmeans with low and high contention3. These tests were run on
a multiprocessor with four 2.0 GHz Xeon processors, each one
two-way hyper-threaded, for a total of eight threads. In all four
tests, boosting substantially improved throughput relative to the
baseline TL2 [7] implementation (normalized here to 1).
Lock-Free Skip List The remaining tests were implemented

in Java using the DSTM2 [12] software transactional memory sys-
tem and the java.util .concurrent libraries. These experiments
were run on a Sun Microsystems T2000 system with 32 cores.
To test the effect of transactional lock granularity, we tested two

boosted implementations of the lock-free ConcurrentSkipListSet
base class. The first uses a single transactional lock for all method
calls, while the second uses a lock per key. Because they use
the same base object, difference in throughput can be attributed
entirely to differences in parallelism. Transactions insert and re-
move random keys from disjoint ranges. Figure 9 shows that fine-
grained transactional synchronization can have a dramatic effect
on throughput, especially when combined with fine-grained thread-
level synchronization.
Concurrent Heap Figure 10 shows the relative throughput

of two heap implementations executing half add() calls and half
removeMin() calls. As noted above, the base object is protected by
a readers/writers lock, where add() calls acquire the shared reader’s

2We used the following switches, which STAMP recommends for low and
high contention contention, respectively. See [5] for the semantics of each
switch.
Low switches: −n4 −q90 −u80 −r65536 −t4194304
High switches: −n8 −q10 −u80 −r65536 −t4194304
3Low switches: −m40 −n40 −t0.05 −i inputs/random1000 12
High switches: −m20 −n20 −t0.05 −i inputs/random1000 12

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 2 4 8 16 32

2PLock

KeyLock

Figure 9. Throughput for transactionally-boosted skip lists using
simple (left) and key-based (right) two-phase locks.

0

5000

10000

15000

20000

25000

30000

35000

2 4 8 16 32

2PLock

RWLock

Figure 10. Throughput for boosted heap implementations using an
exclusive lock (left) and a shared/exclusive lock (right).

lock, and removeMin() calls the exclusive writer’s lock. This ex-
periment suggests that using a read/write lock to discriminate be-
tween add() and removeMin() calls is worthwhile.

5. Formal Model

We now summarize the formal model. A full discussion, complete
with examples, can be found in the Technical Report [11]. This
model is adapted fromWeihl [30] and from Herlihy and Wing [15].

5.1 Histories

A computation is modeled as a history, that is, a sequence of in-
stantaneous events. Events associated with changes in the status of
a transaction T include 〈T init 〉, 〈T commit〉, 〈T abort〉 indicat-
ing that T starts rolling back its effects, and 〈T aborted〉 indicating
that T finishes rolling back its effects. Additionally, the event 〈T ,
x.m(v) 〉 indicates that T invokes method m of object x with argu-

ment v, and the event 〈T , v 〉 indicates the corresponding return
value v. For example, here is a history in which transaction A adds
3 to a skip list:

〈A init 〉 · 〈A, list .add(3) 〉 · 〈A, true 〉 · 〈A commit〉

A single transaction run in isolation defines a sequential history. A
sequential specification for an object defines a set of legal sequen-
tial histories for that object. A concurrent history is one in which
events of different transactions are interleaved.
A subhistory denoted h|T is a subsequence of the events of h,

restricted to a transaction T . Two histories h and h′ are equiva-
lent if for every transaction A, h|A = h′|A. If h is a history,
committed(h) is the subsequence of h consisting of all events of
committed transactions.

Definition 5.1. A history h is strictly serializable if committed(h)
is equivalent to a legal history in which these transactions execute
sequentially in the order they commit.

Definition 5.2. Histories h and h′ define the same state if, for every
history g, h · g is legal if and only if h′ · g is.

Definition 5.3. For a history h and any given invocation I and re-
sponse R, let I−1 and R−1 be the inverse invocation and response.
That is, the invocation and response such that the state reached af-
ter the history h · I · R · I−1 · R−1 is the same as the state reached
after history h.

In the Skip List example, if an element is added to a list and then
removed, the list is returned to its initial state. For this example,
remove() is the inverse of insert () (eliding item values for the
moment).
If I does not modify the data structure, its inverse I−1 is triv-

ial; we denote it noop(). Note that inverses are defined in terms
of method calls (that is, invocation/response pairs), not invoca-
tions alone. For example, one cannot define an inverse for the
removeMin() method call of a heap without knowing which value
it removed.

Definition 5.4. Two method calls I, R and I ′, R′ commute if: for
all histories h, if h · I · R and h · I ′ · R′ are both legal, then
h · I · R · I ′ · R′ and h · I ′ · R′ · I · R are both legal and define
the same state.

Commutativity identifies method calls that are in some sense or-
thogonal and have no dependencies on each other. In the Skip
List example, we can take advantage of the commutativity of the
insert () method for distinct values. No matter how these method
calls are ordered, they leave the object in the same final state.
For a history h, let G be the set of histories g such that h · g is

legal.

Definition 5.5. A method call denoted I · R is disposable if,
∀g ∈ G, if h · I · R and h · g · I · R are legal, then h · I · R · g
and h · g · I · R are legal and both define the same state.

In other words, the method call I · R can be postponed arbitrarily
without anyone being able to tell that I · R did not occur. When
I · R does occur it may alter future computation, but postponing
it still results in a legal history. In the above definition we quantify
over all possible histories that proceed h and end with I · R.
In the Unique ID Generator example, a transaction may delay

the release of an identifier until after it commits. Since releaseID ()
is a disposable method, regardless of how long it is postponed, com-
putation yields legal histories; other transactions acquire alternate
identifiers.

5.2 Rules and Correctness

A transactional boosting system must follow these rules.

1. Commutativity Isolation. For any non-commutative method
calls I1, R1 ∈ T1 and I2, R2 ∈ T2, either T1 commits or aborts
before any additional method calls in T2 are invoked, or vice-
versa.

Informally, commutativity isolation stipulates that methods
which are not commutative can be executed, so long as they are
not executed concurrently. Note that this rule does not specify
a locking discipline, but rather specifies a property of histo-
ries resulting from all possible (correct) disciplines. In practice,
choosing a locking discipline is an engineering decision. A dis-
cipline that is optimal in the sense that no two commutative op-
erations are serialized may suffer performance overhead from
the computation involved in implementing the locking disci-
pline. By contrast, an overly conservative approximation may
inhibit all concurrency. In Section 4 we quantified this trade-off
with some examples.

2. Compensating Actions. For any history h and transaction T , if
〈T aborted〉 ∈ h, then it must be the case that h|T = 〈T init 〉·
I0 · R0 · · · Ii · Ri · 〈T aborted〉 · I−1

i
· R−1

i
· · · I−1

0
· R−1

0
·

〈T aborted〉 where i indexes the last successfully completed
method call.

This rule concerns the behavior of an aborting transaction. At
the point when a transaction decides to abort, it must subse-
quently invoke the inverse method calls of all method calls
completed thus far. The transaction need not acquire locks to
undo its effects. This property is important because for alterna-
tive techniques, such as nested open transactions, care must be
taken to ensure that compensating actions (the analog of inverse
methods) do not deadlock.

3. Disposable Methods For any history h and transaction T , any
method call 〈T, x.m(v) 〉· 〈T, r 〉 that occurs after 〈T commit〉
or after 〈T abort〉 must be disposable.

As a result of this rule, if T generates a method call after
it commits, regardless of how far into the future the method
call occurs, the history is legal. The timing of these delayed
disposable methods is an engineering decision, as discussed in
Section 3.

Theorem 5.1. (Main Theorem) For any STM system that obeys the
correctness rules, the history of committed transactions is strictly
serializable.

All proofs are available in [11].

6. Related Work

Transactional memory [14] has gained momentum as an alterna-
tive to locks in concurrent programming. This approach has been
investigated in hardware [14, 21], in software [8, 9, 13, 27], and
in schemes that mix hardware and software [6, 25]. Existing STMs
synchronized via read/write conflicts, which may cause benign con-
flicts (see Harris et al [10]). Here, we describe how to synchronize
in a way that exploits object semantics.
Open nested transactions [22] (ONT) have been proposed as

a way to implement highly-concurrent transactional objects. In
ONT, a nested transaction can be designated as open. If an open
transaction commits, its effects immediately become visible to all
other transactions. The programmer can register handlers to be
executed when transactions enclosing the open transaction commit
or abort.

Although transactional boosting and ONT both use abstract
method-based locks, the two approaches are starkly divergent.
Open nested transactions are a mechanism, not a methodology. By
themselves, they provide no guidance as to how they can be used
correctly. As noted by Ni et al. [22], care must be taken to avoid
deadlocks in abort handlers, and to avoid unexpected behavior that
may occur if an open nested transaction’s read set intersects a par-
ent’s write set. In transactional boosting, however, inverse methods
called by an aborting transaction cannot deadlock with other ongo-
ing transactions because the aborting transaction acquires no addi-
tional locks. Moreover, because the base object’s methods are not
called in a nested transaction, read/write conflicts between parents
and open children do not arise.
When comparing boosting to ONT, it is important to distinguish

between different kinds of potential deadlocks. Like McRT [25],
transactional boosting uses two-phase locking, which is vulnerable
to deadlock, but can be avoided by timeouts. Deadlocks on lock
acquisition are qualitatively different from the deadlocks that arise
in ONT because it is possible to recover from lock acquisition
deadlock by aborting and retrying a transaction that times out.
By contrast, in ONT, there is no way to recover if an aborting
transaction deadlocks while executing its abort handler.
Open nested transactions also have certain limitations in expres-

sive power. It is unclear how to map open nested transactions onto
algorithms that use techniques such as lock coupling, where syn-
chronization regions are not properly nested. Moreover, because
transactions enforce isolation, there is no possibility of thread-level
concurrency between open nested transactions, and therefore no
way to exploit existing thread-level synchronization libraries. Fi-
nally, using open nested transactions to construct, say, a highly-
concurrent transactional hash table, requires re-implementing the
hash table itself, while transactional boosting would treat the hash
table as a black box.
Harris and Stipić [10] recently proposed “abstract nested trans-

actions” (ANTs). Although ANTs also aim to reduce benign con-
flicts, the approach is substantially different from ours. Unlike our
methodology, memory access during an abstract nested transaction
is logged, and this log is used to detect conflicts. As a commit-
time optimization, ANT re-evaluates expressions (closures) which
are part of conflicting data access to ensure the expression value
has not changed since it was first computed. While this approach is
well-suited to mostly-functional languages, it is unclear how well it
could be used in a language where re-evaluating closures may have
side effects. Transactional boosting does not need to track memory
access as an executing transaction will not conflict with any other.
Many of the mechanisms used by transactional boosting are

well-known from other contexts. Other work on commutativity-
based synchronization includes Bernstein [4], Steele [29], Diniz
and Rinard [24], Weihl [30], Schwartz and Spector [26], Beeri [3],
and Korth [17].
Transactional boosting also benefits from logging high-level

method calls, instead of low-level memory accesses, a notion in-
troduced by Lomet, and by Schwarz and Spector [19, 26].
Kulkarni et al. [18] describe Galios, a system that exploits com-

mutativity and inverses for efficient thread-level speculation. Mora-
van et al. [21] and Zilles and Baugh [31] observe that constructs
similar to open nested transactions can be used to allow transac-
tions to execute non-transactional code, such as system calls.

7. Conclusion

We have presented a methodology for translating a large class of
highly-concurrent linearizable objects into highly-concurrent trans-
actional objects. Given only a well-defined specification of a black-
box object, transactional boosting allows concurrent threads to in-
teract with the object within a transaction, and no log of memory

access is needed neither for conflict detection nor for recovery from
aborted transactions. We have shown that for many workloads, the
additional run-time burden of transactional boosting is far offset by
the performance gain of eliminating memory access logging. Fi-
nally, our approach guarantees that the history of computation re-
mains strictly serializable in the presence of arbitrarily many con-
current transactions and abortions.
We defer one matter to future work. Deadlock is possible if

two threads attempt to acquire two of the same abstract locks in
opposite order. One possible solution is to introduce a timeout when
a thread is attempting to acquire a lock; when the timeout expires,
the thread can partially abort itself with the hope of releasing the
lock that another thread is attempting to acquire.
There are many ways in which transactional boosting can be

extended. It could encompass STMs based on nested transactions
using techniques similar to those employed by LogTM [21]. Trans-
actions could be extended to encompass multiple threads, using ab-
stract locks for transactional synchronization, and relying on the
base object for thread-level synchronization. In a hybrid system that
combines small hardware transactions with STM, one could imple-
ment base method calls as hardware transactions, using boosting to
managed long-lived software transactions.

Acknowledgments

We are grateful to Tim Harris for pointing out that transactional
boosting can be extended to support the retry () construct for
conditional synchronization from STMHaskell [9], monitoring lock
releases to reschedule retried transactions. This work was partially
supported by grants from Sun Microsystems and Intel Corporation.

References

[1] SXM 1.1: Software Transactional Memory package for C#.
http://research.microsoft.com/research/downloads/Details/6cfc842d-
1c16-4739-afaf-edb35f544384/Details.aspx.

[2] BAYER, R., AND SCHKOLNICK, M. Concurrency of operations on
B-Trees. Acta Informatica 9 (1977), 1–21.

[3] BEERI, C., BERNSTEIN, P., GOODMAN, N., LAI, M.-Y., AND
SHASHA, D. A concurrency control theory for nested transactions
(preliminary report). In Proceedings of the 2nd annual ACM
symposium on Principles of distributed computing (PODC ’83) (New
York, NY, USA, 1983), ACM Press, pp. 45–62.

[4] BERNSTEIN, A. Analysis of programs for parallel processing. IEEE
Transactions on Electronic Computers 15, 5 (1966), 757–763.

[5] CAO MINH, C., TRAUTMANN, M., CHUNG, J., MCDONALD, A.,
BRONSON, N., CASPER, J., KOZYRAKIS, C., AND OLUKOTUN,
K. An effective hybrid transactional memory system with strong
isolation guarantees. In Proceedings of the 34th Annual International
Symposium on Computer Architecture (ISCA 07). Jun 2007.

[6] DAMRON, P., FEDOROVA, A., LEV, Y., LUCHANGCO, V., MOIR,
M., AND NUSSBAUM, D. Hybrid transactional memory. In
Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems (ASPLOS-

XII) (New York, NY, USA, 2006), ACM Press, pp. 336–346.

[7] DICE, D., SHALEV, O., AND SHAVIT, N. Transactional locking II.
In Proceedings of the 20th International Symposium on Distributed
Computing (DISC ’06) (2006), pp. 194–208.

[8] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. In Proceedings of the 18th ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA ’03) (2003), ACM Press, pp. 388–402.

[9] HARRIS, T., MARLOW, S., PEYTON-JONES, S., AND HERLIHY,
M. Composable memory transactions. In Proceedings of the 10th
ACM SIGPLAN symposium on Principles and practice of parallel

programming (PPoPP ’05) (New York, NY, USA, 2005), ACM Press,
pp. 48–60.

[10] HARRIS, T., AND STIPIĆ, S. Abstract nested transactions.
http://research.microsoft.com/ tharris/papers/2007-ant.pdf, 2007.

[11] HERLIHY, M., AND KOSKINEN, E. Transactional boosting: A
methodology for highly-concurrent transactional objects. Tech. Rep.
CS-07-08, Brown University, Department of Computer Science,
2007.

[12] HERLIHY, M., LUCHANGCO, V., AND MOIR, M. A flexible frame-
work for implementing software transactional memory. In Pro-
ceedings of the 21th ACM SIGPLAN conference on Object-Oriented

Programing, Systems, Languages, and Applications (OOPSLA ’06)

(2006), pp. 253–262.

[13] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER,
III, W. N. Software transactional memory for dynamic-sized
data structures. In Proceedings of the 22nd annual symposium on
Principles of distributed computing (PODC ’03) (2003), ACM Press,
pp. 92–101.

[14] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:
architectural support for lock-free data structures. In Proceedings of
the 20th Annual International Symposium on Computer Architecture

(ISCA ’93) (1993), ACM Press, pp. 289–300.

[15] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS) 12, 3 (1990), 463–492.

[16] HUNT, G. C., MICHAEL, M. M., PARTHASARATHY, S., AND
SCOTT, M. L. An efficient algorithm for concurrent priority queue
heaps. Information Processing Letters 60, 3 (1996), 151–157.

[17] KORTH, H. F. Locking primitives in a database system. J. ACM 30,
1 (1983), 55–79.

[18] KULKARNI, M., PINGALI, K., WALTER, B., RAMANARAYANAN,
G., BALA, K., AND CHEW, P. Optimistic parallelism requires
abstractions. In Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation (PLDI ’07)

(2007).

[19] LOMET, D. B. MLR: a recovery method for multi-level systems. In
Proceedings of the 1992 ACM SIGMOD International Conference on

Management of Data (New York, NY, USA, jun 1992), vol. 21, ACM
Press, pp. 185–194.

[20] MICHAEL, M. M. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the 14th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’02)

(2002), ACM Press, pp. 73–82.

[21] MORAVAN, M. J., BOBBA, J., MOORE, K. E., YEN, L., HILL,
M. D., LIBLIT, B., SWIFT, M. M., AND WOOD, D. A. Supporting
nested transactional memory in LogTM. In Proceedings of the 12th
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-XII) (New York, NY,
USA, 2006), ACM Press, pp. 359–370.

[22] NI, Y., MENON, V. S., ADL-TABATABAI, A.-R., HOSKING, A. L.,
HUDSON, R. L., MOSS, J. E. B., SAHA, B., AND SHPEISMAN,
T. Open nesting in software transactional memory. In Proceedings
of the 12th ACM SIGPLAN symposium on Principles and practice
of parallel programming (PPoPP ’07) (New York, NY, USA, 2007),
ACM Press, pp. 68–78.

[23] PUGH, W. Skip lists: A probabilistic alternative to balanced trees. In
Workshop on Algorithms and Data Structures (1989), pp. 437–449.

[24] RINARD, M. C., AND DINIZ, P. C. Commutativity analysis: A new
analysis technique for parallelizing compilers. ACM Transactions
on Programming Languages and Systems 19, 6 (November 1997),
942–991.

[25] SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R., MINH, C. C.,
AND HERTZBERG, B. Mcrt-STM. In Proceedings of the 11th
ACM SIGPLAN symposium on Principles and Practice of Parallel

Programming (PPoPP ’06) (2006).

[26] SCHWARZ, P. M., AND SPECTOR, A. Z. Synchronizing shared
abstract types. ACM Transactions on Computer Systems 2, 3 (1984),
223–250.

[27] SHAVIT, N., AND TOUITOU, D. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’95) (1995), ACM Press, pp. 204–
213.

[28] SPEAR, M. F., MARATHE, V. J., DALESSANDRO, L., AND SCOTT,
M. L. Privatization techniques for software transactional memory.
In Proceedings of the 26th Annual ACM Symposium on Principles
of Distributed Computing (PODC ’07) (New York, NY, USA, 2007),
ACM, pp. 338–339.

[29] STEELE, JR, G. L. Making asynchronous parallelism safe for
the world. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL ’90)

(New York, NY, USA, 1990), ACM Press, pp. 218–231.

[30] WEIHL, W. Data-dependent concurrency control and recovery
(extended abstract). In Proceedings of the second annual ACM
symposium on Principles of distributed computing (PODC ’83) (New
York, NY, USA, 1983), ACM Press, pp. 63–75.

[31] ZILLES, C., AND BAUGH, L. Extending hardware transactional
memory to support nonbusy waiting and nontransactional actions.
In Proceedings of the 1st ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing

(TRANSACT ’06). June 2006.

