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Abstract
We present a general theory of serializability, unifying a wide range
of transactional algorithms, including some that are yet to come.
To this end, we provide a compact semantics in which concurrent
transactions PUSH their effects into the shared view (or UNPUSH
to recall effects) and PULL the effects of potentially uncommitted
concurrent transactions into their local view (or UNPULL to detan-
gle). Each operation comes with simple criteria given in terms of
commutativity (Lipton’s left-movers and right-movers).

The benefit of this model is that most of the elaborate reason-
ing (coinduction, simulation, subtle invariants, etc.) necessary for
proving the serializability of a transactional algorithm is already
proved within the semantic model. Thus, proving serializability (or
opacity) amounts simply to mapping the algorithm on to our rules,
and showing that it satisfies the rules’ criteria.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel Program-
ming; D.3.1 [Programming Languages]: Formal Definitions
and Theory—Semantics; D.3.2 [Programming Languages]:
Language Classifications—Concurrent, distributed, and parallel
languages; D.3.3 [Programming Languages]: Language Con-
structs and Features—Concurrent programming structures; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Operational semantics

General Terms Languages, Theory

Keywords Push/Pull transactions, abstract data-types, transac-
tional memory, transactional boosting, commutativity, movers

1. Introduction
Recent years have seen an explosion of research on methods of pro-
viding atomic sections in modern programming languages, typ-
ically implemented via transactional memory (TM). The atomic
keyword provides programmers with a powerful concurrent pro-
gramming building block: the ability to specify when a thread’s
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operations on shared memory should appear to take place instantly
when viewed by another thread.

To support such a construct, we must be able to reason about
atomicity. Implementations typically achieve this by dynamically
detecting conflicts between concurrent threads. This can be done by
tracking memory operations in hardware [14–16] or software [4, 6,
8, 13, 27]. Meanwhile, an alternate approach exploits abstract-level
notions of conflict over linearizable data-structure operations such
as commutativity [11, 20, 21, 30]. Both levels of abstraction also
chose between optimistic execution, pessimistic execution, or mix-
tures of the two. Finally, there are multiple notions of correctness,
and circumstances under which one may be preferable to another.

Unfortunately, we lack a unified way of formally describing
this myriad of models, implementations and correctness criteria.
This leads to confusion when trying to understand comparative ad-
vantages/disadvantages and how/when models can be combined
or are interoperable. For example, we may need to understand
how one might want to combine memory-level hardware transac-
tions [16, 37] for unstructured memory operations with abstract-
level data-structure operations (e.g. transactional boosting [11] and
open nesting [30]). Today, at best, we have two custom semantics
for reasoning about the models individually, but no unified view.

We present a simple calculus that illuminates the core of trans-
actional memory systems. In our model concurrent transactions
PUSH their effects into the shared log (or UNPUSH to roll-back) and
PULL in the effects of potentially uncommitted concurrent transac-
tions (or UNPULL to detangle). Moreover, transactions can PUSH
or PULL operations in non-chronological orders, provided certain
commutativity (left/right-movers [25]) conditions hold. We have
proved that this model is serializable, discussed in Section 5. To
cope with the non-monotonic nature of the model (arising from UN-
PUSH, UNPULL, etc.), we devised a novel preservation invariant that
is closed under rewinding both the local and global logs. The bene-
fit of this semantic model is that most of the elaborate reasoning
(coinduction, simulation relations, invariants, etc.) necessary for
proving the correctness of a transactional algorithm is contained
within the semantic model, and need only be proved once.

Our work formulates an expressive class of transactions and we
have applied it to a wide range of TM systems including: opti-
mistic read/write software TMs [6, 8], hardware transactional mem-
ories ([16], [15]), pessimistic TMs [4, 11, 27], hybrid opt./pess.
TMs such as irrevocability [39], open nested transactions [30], and
abstract-level techniques such as boosting [11].

Our choice of expressiveness includes transactions that are not
opaque [10]: transactions may share their uncommitted effects.
This choice carves out a design space for implementations to take
advantage of the full spectrum of possibilities (e.g. dependent trans-
actions [32], open nested transactions [30], liveness [3]) and is rel-
atively unrestrictive in terms of TM correctness criteria. However,
despite expressive power, the model also gives the appropriate cri-
teria to ensure serializability [31]. Meanwhile, we can also identify
restrictions on the model for which opacity is recovered.



In our experience we have found that our model provides a
mathematically rigorous foundation for intuitive concepts (e.g.
PUSH and PULL) used in colloquial conversations contrasting TM
systems.

Limitations. We have proved serializability by hand but we hope
to verify our work with a proof assistant. Also, our work models
safety properties of transactions (i.e. serializability, opacity) and a
direction for future work is to consider liveness/progress issues.

2. Overview
In this paper we distill the essence of reasoning about transactional
implementations into a semantic model we call Push/Pull transac-
tions. The model consists of a few simple rules—named PUSH,
PULL, etc.—that correspond to natural stages in a transactional
memory algorithm. For example, after a transaction applies an ef-
fect locally it then may PUSH this effect out into the shared view,
where other transactions may PULL the effect into their local view.

The Push/Pull model has no concrete state, only a shared log of
the object operations that have been applied, as well as per-thread
local logs. Here is an informal illustration:
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Once a transaction applies an operation op to its local log via the
APPLY rule, it may PUSH this op to the shared log. At this stage,
the transaction may not have committed. Meanwhile, other threads
may PULL the operation into their local log. The PULL case enables
transactions to update their local view with operations that are per-
manent (that is, that correspond to committed transactions) or even
to view the effects of another uncommitted transaction (e.g. for
early conflict detection [13] or to establish a dependency [32]).
Push/Pull also includes an UNPULL rule which discards a transac-
tion’s knowledge of an effect due to another thread, and an UNPUSH
rule which removes a thread’s operation from the shared view, per-
haps implemented as an inverse. The UNAPPLY rule is useful for
rewinding a transaction’s local state. Finally, there is a simple com-
mit rule CMT that, roughly, stipulates that all operations must have
been PUSHed and all PULLed operations must have been commit-
ted.

Different algorithms will use different combinations of these
rules (cf. Section 6). Push/Pull is expressive enough to describe a
wide range of transactional implementations, all with only a few
simple, tangible rules. Pessimistic algorithms [4, 11, 27] PUSH im-
mediately after a local APPLY, optimistic algorithms [6, 8] PUSH
their operations on commit, and hybrid [39] algorithms do a mix-
ture of the two. Opaque [10] transactions do not PULL uncom-
mitted effects. Non-opaque algorithms, such as dependent trans-
actions [32], permit a transaction to PULL in uncommitted effects.
From different patterns of Push/Pull rule usage one can derive cor-
rectness proofs for many transactional memory algorithms.

Example. Consider the transactional boosting [11, 12] hashtable
implementation given in Figure 1. Recall that a boosted transaction
uses a linearizable base object (here a ConcurrentSkipListMap),
along with abstract locking to ensure that only commutative oper-
ations occur concurrently. In this example a thread executing the
atomic block in put acquires a lock corresponding to the key of

1 class BoostedSkipListMap[Key,Val] {
2 val abstractLock = new AbstractLock()
3 val map = new ConcurrentSkipListMap[Key,Val]()
4 def put(key: Key, value: Val, t=Tx.current) {
5 atomic {
6 abstractLock lock key
7 if (map contains key) {
8 var oldValue = map(key)
9 Tx.onAbort( () ⇒

10 map.put(key, oldValue)
11 abstractLock unlock key
12 )
13 } else {
14 Tx.onAbort( () ⇒
15 map.remove(key)
16 abstractLock unlock key
17 )
18 }
19 map.put(key,value)
20 abstractLock unlock key
21 }
22 }
23 }

Figure 1. An implementation of transactional boosting [11]
which uses abstract locking and commutativity to safely per-
form put operations on a shared map, implemented as a
ConcurrentSkipList.

interest (Line 6). In this way, no two transactions will conflict be-
cause if they try to access the same key one will block. Within the
put method there are two scenarios depending on whether key is
already defined in the map (Line 7) and, consequently, there are two
cases for how to handle an abort. Finally, put ends by updating map
(Line 19) and unlocking the abstractLock (Line 20).

We can describe this algorithm intuitively with the Push/Pull
model. A diagram depicting different reachable Push/Pull configu-
rations is given in Figure 2. For simplicity, we focus on the shared
logG and only the logLi of transaction i. Each grey box represents
a single operation; the unimportant ones have been left blank. The
transitions between configurations are labeled with the Push/Pull
transition rule and the corresponding line number of Figure 1 where
that transition happens.

When the transaction begins it implements a PULL (Line 5) im-
plicitly because, in transactional boosting, modifications are made
directly to the shared state so the local view is the same as the
shared view. It may, for example, PULL a put(5) operation from
G that has already been committed (denoted as such with a ✓)
and append the operation to its log Li. Next, thread i may APPLY
the put(3) operation, appending it to its local log, and then PUSH
put(3) by appending it to the global log (both Line 19). Due to the
pessimistic nature of boosting, APPLY and PUSH always happen
together while in other, more optimistic transactional algorithms,
an operation may be PUSHed at a later stage. If thread i commits
(Line 21), it takes the CMT rule and marks the put(3) operation as
committed with a ✓.

Threads may also move in a backward direction, undoing their
effects (as in the onAbort handlers in Figure 1). If an abort is sig-
naled, the transaction performs UNAPPLY and UNPUSH, both imple-
mented by an inverse map operation (Lines 10 and 15, depending
on whether the key was already in the map). In this simple diagram,
the backward rules (UNPUSH and UNAPPLY) revisit earlier configu-
rations but, with other thread interactions, backward rules may lead
to new configurations. Transactions may use these rules in subtle
ways, including PULLing uncommitted operations and PUSHing op-



Example Push/Pull Configurations and Transitions
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Figure 2. Using Push/Pull to model transactional boosting. The shared state is a log G and the state of a given thread i is represented by its
local log Li. Arrows indicate transitions in the Push/Pull model and they are annotated with the name of the Push/Pull rule.

erations in an order different from the local APPLY order. Another
rule called UNPULL allows transactions to discard operations that
have been PULLed from the shared log. This rule is useful to detan-
gle a transaction that has viewed the effects of another transaction
that may abort.

Correctness criteria. Despite the expressiveness of the rules,
threads are not permitted to perform them whenever they please.
Each rule is accompanied by certain correctness criteria, formal-
ized in Section 4. For example, a criterion on the PUSH rule is that
the operation being PUSHed must be able to commute with (more
precisely: move to the right of) all other threads’ operations in the
global log that have not yet been committed (PUSH criterion (ii) in
Figure 4). This particular criterion is the essence of boosting: that
the commutative operations of multiple transactions can be exe-
cuted concurrently, and boosting ensures this with abstract locking.
As another example, a criterion for UNPUSH(op) is that everything
PUSHed chronologically after op could still have been PUSHed if op
hadn’t been pushed (UNPUSH criterion (ii) in Figure 4). This holds
trivially in this example because there are no operations other than
the put.

Proofs of serializability. In Section 5 we prove that if an imple-
mentation satisfies all of the rules’ correctness criteria, then it is
serializable. In this sense we have done the hard work of reasoning
about transactional memory algorithms. The full formal serializ-
ability argument involves showing a simulation relation between an
interleaved machine and a sequential history. The Push/Pull model
encapsulates the difficult components of this argument (e.g. simu-
lation proofs, coinduction, etc.) while, on the outside, offering rules
that are simple and intuitive.

Consequently, we believe that our work will clean up transac-
tional correctness proofs. For a user to prove the correctness of
their algorithm they must simply: (1) demarcate the algorithm into
fragments: PUSH, PULL, etc. (2) prove the implementation satis-
fies the respective correctness criteria. Moreover, proofs of correct-
ness criteria do not typically involve elaborate simulation relations
or coinductive reasoning, but rather algebraic (i.e. commutative)
properties of sequential code. In the above example, abstract lock-
ing ensures that no two put operations on the same key may hap-
pen concurrently. Therefore, all that must be done is to prove that
the put(x) commutes with put(y) when x ≠ y. Proofs involving
commutativity can be aided by recent works in the literature [7, 17].

3. Language and Atomic Semantics
In this section we describe a generic language of transactions and
define an idealized semantics for concurrent transactions called the
atomic semantics, in which there are no interleaved effects on the
shared state. We later introduce the Push/Pull semantics and show
that it simulates the atomic semantics. Due to lack of space, this

paper provides mainly the intuition behind the Push/Pull model.
The full details can be found in our technical report [19].

Language. We assume a set M of method calls and individual
methods are written, for example, as ht.put("a",5). Threads
execute code c from some programming language that includes
thread forking, local stack updates localR, transactions tx c,
method names such as m, and a skip statement. The local stack
(sometimes referred to as local state) is over space Σ, is separate
from the logs, and is used in order to model arguments and return
values. Local stack updates localR involve a relation R ⊆ Σ ×Σ.
Our first trick is to abstract away the programming language with a
few functions:
c tx(m,c′) ∶ Within a transaction, code c can be reduced to the

pair (m,c′) where m is a next reachable method
call in the reduction of c, with remaining code c′.

c (t, c′) ∶ Outside of a transaction, code c can be reduced to
the pair (t, c′). Here c′ is the remaining code, and t
is either a local stack update localR, a transaction
tx c, or a fork.

fin(c) ∶ This predicate is true provided that there is a re-
duction of c to skip that does not encounter more
work, e.g. a method call, a transaction, a fork, or a
local operation.

These definitions allow us to obtain a simple semantics, despite an
expressive input language, with functions to resolve nondetermin-
ism between method operation names and at the end of a transac-
tion. We assume that code is well-formed in that a single operation
name m is always contained within a transaction (this issue of iso-
lation [28] is orthogonal).

Example 1. One could use the generic language:

c ∶∶= c1 + c2 ∣ c1 ; c2 ∣ (c)∗ ∣ skip ∣ tx c ∣ m ∣ localR
This grammar additionally consists of nondeterministic choice,
sequential composition, and nondeterministic looping. We elide
the definition of c tx(n, c′) for lack of space, but it is straight-
forward. For example, if c = tx (skip;(c1+(m+n));c2), then
one path through c reaches method n with remaining code c2. That
is: c tx(n, c2).

To make things more concrete, examples in this paper will
typically use the above language. We do not permit syntactically
nested transactions1, however our model permits threads to roll
backwards to any execution point [18] thus modeling the partial
abort nature of nested transactions.

Operations and logs. State is represented in terms of logs of
operation records. An operation record (or, simply, operation) op =
⟨m,σ1, σ2, id⟩ is a tuple consisting of the operation name m, a

1 For a discussion, see [18].



thread-local pre-stack σ1 (method arguments), a thread-local post-
stack σ2 (method return values), and a unique identifier id . An
op is from space Ops. We assume a predicate fresh(id) that holds
provided that id is globally unique (details omitted for lack of
space). In the atomic semantics defined below, the shared state ` ∶
list op is an ordered list of operations (more information is needed
in the Push/Pull semantics, discussed later). We use notations such
as `1 ⋅ `2 and ` ⋅ op to mean list append and appending a singleton,
resp.

Parameter 3.1 (From logs to states: allowed). We require a prefix-
closed predicate on operation lists allowed ` that indicates whether
an operation log ` corresponds to a state.

For convenience we will also write ` allows ⟨m,σ1, σ2, id⟩ which
simply means allowed ` ⋅ ⟨m,σ1, σ2, id⟩. For example, if we have
a simple TM based on memory read/write operations we ex-
pect allowed ` ⋅ ⟨a := x, [x ↦ 5], [x ↦ 5, a ↦ 5], id⟩, but
¬allowed ` ⋅ ⟨a := x, [x ↦ 5], [x ↦ 5, a ↦ 3], id⟩ or more elab-
orate specifications that involve multiple tasks. Ultimately, we ex-
pect the allowed predicate to be induced by the implementation’s
operations on the state and the initial state.

We define a precongruence over operation logs `1 ≼ `2 coinduc-
tively, by requiring that all allowed extensions of the log `1, are also
allowed extension to the log `2. This definition will ultimately be
used in the simulation between Push/Pull and an atomic machine.
We use a coinductive definition so that the precongruence can be
defined up to all infinite suffixes.

Definition 3.1 (Shared log precongruence ≼). For all `1, `2,

allowed `1 ⇒ allowed `2 ∀op. (`1 ⋅ op) ≼ (`2 ⋅ op)
`1 ≼ `2 gfp

Informally, the above greatest fixpoint says that there is no se-
quence of observations we can make of `2, that we can’t also make
of `1. This is more general than simply requiring that the set of
states reached from executing the first log be included in the sec-
ond. Unobservable state differences are also permitted.

Atomic semantics. We define a simple semantics, given in Fig-
ure 3, in which transactions are executed instantly, without inter-
ruption from concurrent threads. The semantics is a relation

aÐ→ over
pairs consisting of a list of concurrent threads A and a shared log
`. A single thread (c, σ) ∈A is a code c and local stack σ.

We begin with Figure 3(b). The atomic machine can take
an AFIN step when there is a thread (c, σ) that can complete,
i.e. fin(c). The AFORK rule allows a new thread executing code
c1 (also under local state σ) to be forked from thread (c, σ). The
ALOCAL rule involves manipulating the thread-local state σ to σ′

via relation R. Finally, the ATXN rule says that if thread executing
code c1 can reduce to a transaction tx c with remaining code c2,
then the transaction c is executed atomically by the big step rules ⇓
described next.

Figure 3(a) illustrates the big step semantics ⇓which completely
reduce a transaction. The rule BSFIN can be used if fin(c) holds:
that c can be reduced to skip, thus denoting the end of the transac-
tion with a resulting log `. Alternately, the rule BSFIN uses  tx to
find a next operation m. This rule is taken provided that the opera-
tion ⟨m,σ,σ′⟩ is permitted and that (c2, σ′) can further be entirely
reduced to σ′′, `2. In this way, ⇓ appends the entire transaction’s
operations (unique IDs are unneeded in the atomic semantics) to
the shared log.

4. The Push/Pull Model
In this section we describe the Push/Pull model. Concurrent threads
execute the language described in the previous section but now

(a) Atomic Machine Big Step Transaction Rules ⇓

fin(c)

(c, σ), ` ⇓ c, `
BSFIN

c tx(m,c2)
`1 allows ⟨m,σ,σ′⟩

(c2, σ
′
), ` ⋅ ⟨m,σ,σ′⟩ ⇓ σ′′, `2

(c, σ), `1 ⇓ σ
′′, `2

BSSTEP

(b) Atomic Machine Rules a
Ð→

fin(c)

A1 ⋅ (c, σ) ⋅A2,G
a
Ð→A1 ⋅A2,G

AFIN

c (fork c1, c2)

A1 ⋅ (c, σ) ⋅A2,G
a
Ð→A1 ⋅ (c1, σ) ⋅ (c2, σ) ⋅A2,G

AFORK

c (localR, c′) R σ σ′

A1 ⋅ (c, σ) ⋅A2,G
a
Ð→A1 ⋅ (c

′, σ′) ⋅A2,G
ALOCAL

c1 (tx c, c2) (c, σ),G ⇓ σ′,G′

A1 ⋅ (c1, σ) ⋅A2,G
a
Ð→A1 ⋅ (c2, σ

′
) ⋅A2,G

′

ATXN

Figure 3. Atomic semantics of concurrent threads.

transaction interleavings are possible. Moreover, we describe rules
APPLY, UNAPPLY, PUSH, UNPUSH, PULL, UNPULL, CMT which
can be made by a given transaction to control how its effects
are shared with the environment or view the effects made by the
environment.

As in the atomic semantics, the Push/Pull semantics has a re-
flexive, transitive reduction T,G ↝ T′,G′ that reduces a list of
threads T ∶ list (c × σ × L) and a global log G to T′,G′. Here,
however, there is a per-thread local log L and the structure of L
and the global log G is more complicated, as described below.

The reductions of the form T,G ↝ T′,G′ are given in Fig-
ure 4(a). Again, ↝ has rules for finishing a thread (FIN), forking
(FORK) and local state manipulations (LOCAL), none of which al-
ter the local log L.

The BEGIN rule can be used when it is possible for a thread
to begin a transaction (c1 can be reduced to tx c). The STEP rule
permits a single thread to take a step of one of the six Push/Pull
rules (the ⇁dir relation described next). Finally, the CMT rule can
be taken when a transaction can reduce its code to skip. We will
return to this rule at the end of this section.

The single-thread reduction relation ⇁dir has two directional
types:⇁fwd and⇁bwd. The three⇁fwd rules APPLY, PUSH, and PULL

pertain to transactions making forward progress and the⇁bwd rules
UNAPPLY, UNPUSH, and UNPULL pertain to transactions rewind-
ing. Later we will use this directional distinction to set up invariants
that are closed under rewind.

Figure 4(b) lists the six proof rules that form the core of
Push/Pull. These rules pertain to a thread that is in the process of ex-
ecuting a transaction tx c and they manipulate the local stack, local
log, and shared log in various ways. The local log L ∶ list (Ops × l)
is a list of operations, each with an additional flag l, as to the status
of the operation:

l ∶∶= unpushed c (local operation)
∣ pushed c (local operation shared to global view)
∣ pulled (some other transaction’s operation)

These flags keep track of the status of a given operation and from
where it came. Additionally, the unpushed and pushed flags save
the code c that was active when the log entry was created. There
is also a global log G ∶ list (Ops × g) with flag g that distinguishes
between operations that have or have not been committed: g ∶∶=



(a) Push/Pull Machine Rules↝
fin(c)

T1 ⋅ {c, σ,L} ⋅T2,G↝ T1 ⋅T2,G
FIN

c (fork c1, c2)

T1 ⋅ {c, σ,L} ⋅T2,G↝ T1 ⋅ {c1, σ,L} ⋅ {c2, σ,L} ⋅T2,G
FORK

c1 (localR, c2) R σ1 σ2

T1 ⋅ {c1, σ1, L} ⋅T2,G↝ T1 ⋅ {c2, σ2, L} ⋅T2,G
LOCAL

c1 (tx c, c2)
T1 ⋅ {c1, σ,L} ⋅T2,G↝ T1 ⋅ {(tx c, c2), σ,L} ⋅T2,G

BEGIN
fin(c) L ⊆ G cmt(G,L,G′)

T1 ⋅ {(tx c, c1), σ,L} ⋅T2,G↝ T1 ⋅ {c1, σ,L} ⋅T2,G
′

CMT

{c, σ,L},G
⇁
dir {c′, σ′, L′},G′

T1 ⋅ {(tx c, c1), σ,L} ⋅T2,G↝ T1 ⋅ {(tx c
′, c1), σ

′, L′} ⋅T2,G
′

STEP

where cmt(G1, L1,G2) ≡

G2 = map (λ (op, g). {
(op,gCmt) if op ∈ ⌊L1⌋pushed

(op, g) otherwise
)G1

(b) Push/Pull Step Rules
⇁
dir

(i)− c1 tx(m,c2)
(ii)− L1 allows ⟨m, σ1, σ2⟩
(iii)− fresh(id)

{tx c1, σ1,L1},G1
⇁
fwd {tx c2, σ2,L1 ⋅ [⟨m, σ1, σ2, id⟩,unpushed c1]},G1

APPLY

{tx c1, σ1,L1 ⋅ [⟨m, σ2, σ3, id⟩,unpushed c2]},G1
⇁
bwd {tx c2, σ2,L1},G1

UNAPPLY

(i)− op ◂ ⌊L1⌋unpushed
(ii)− ⌊G1⌋gUCmt ∖ ⌊L1 ⋅ L2⌋pushed ◂ op
(iii)− G1 allows op

{tx c1, σ1,L1 ⋅ [op,unpushed c2] ⋅ L2},G1
⇁
fwd {tx c1, σ1,L1 ⋅ [op,pushed c2] ⋅ L2},G1 ⋅ [op,gUCmt]

PUSH

(i)− allowed G1 ⋅G2

(ii)− ⌊L2⌋pushed ◂ op

{tx c1, σ1,L1 ⋅ [op,pushed c2] ⋅ L2},G1 ⋅ [op, g] ⋅G2
⇁
bwd {tx c1, σ1,L1 ⋅ [op,unpushed c2] ⋅ L2},G1 ⋅G2

UNPUSH

(i)− op ∉ L
(ii)− L allows op
(iii)− op ◂ ⌊L⌋pushed ∪ ⌊L⌋unpushed

{tx c1, σ1,L},G1 ⋅ [op, g] ⋅G2
⇁
fwd {tx c1, σ1,L ⋅ [op,pulled]},G1 ⋅ [op, g] ⋅G2

PULL

(i)− allowed L1 ⋅L2

{tx c1, σ1,L1 ⋅ [op,pulled] ⋅ L2},G
⇁
bwd {tx c1, σ1,L1 ⋅ L2},G

UNPULL

Figure 4. (a) The machine reductions of Push/Pull. (b) The Push/Pull rules. Notations ∖, ∉, ⋅,⊆ are all lifted to lists where equality is given
by ids. We will refer to the premise criteria of each rule as, for example, “PUSH criterion (ii).” Criteria that are written in gray font are not
strictly necessary. See inline discussion.

gUCmt ∣ gCmt. Each proof rule comes with criteria, labeled as
APPLY criterion (i), APPLY criterion (ii), etc.

We will use the following liftings of set operations to lists:

⟨m1, σ1, σ
′

1, id1⟩ ∈ L ≡ ∃i. L[i].id = id1

G ∖L ≡ filter (λ (op, g). op ∉ L) G
L ⊆ G ≡ ∀i. L[i].op ∈ G

where we use L[i] to refer to the ith list element of L. We also use
L[i].op to access ith operation tuple, ignoring the paired flag. The
notation L[i].id further accesses the identifier of this ith operation.
Notice that inclusion is based on equality over operation IDs. In ∖
the order is determined by the first operand, G.

The APPLY rule. APPLY is similar to the BSSTEP rule in the
atomic semantics: it can be used if there is a nondeterministic
path in code c1 that reaches a method m (with continuation code
c2). APPLY criterion (ii) specifies that method m must be allowed
by the sequential specification with post-stack σ2. If so, the new
operation is appended to the local log L1 with fresh operation

id1 (formalization of fresh in APPLY criterion (iii) is omitted).
Intuitively, this rule applies some next method m to the local log
but does not yet share it by sending it to the global log; it is
marked as such with flag unpushed. The APPLY rule also records
the pre-code c1 in the local log so that the transaction can later be
reversed (i.e. aborted or undone). Indeed, the rule UNAPPLY moves
backwards by taking the last item in the local log and, provided that
it is still unpushed, recalls the previous local stack and code.

The PUSH rule. A transaction may choose to share its effects
with the global view via the PUSH rule. This reduction changes
an operation’s flag from unpushed to pushed in the local log and
appends the operation to the global log, provided three conditions
hold. These conditions use the notion of left-mover [25] which is
an algebraic property of operations. We provide a novel coinductive
definition of left-mover that builds upon log precongruence:

Definition 4.1 (Left-mover over logs). For all op1, op2

op2 ◂ op1 ≡ ∀`. ` ⋅ {op1, op2} ≼ ` ⋅ {op2, op1}.



Intuitively, operation op2 can move to the left of operation op1 pro-
vided that whenever we are allowed to do op1 ⋅ op2, we are also
allowed to do op2 ⋅ op1 and the resulting log is the same (precon-
gruent). The proof of serializability involves several fairly straight-
forward lemmas pertaining to allowed and left/right moverness,
omitted for lack of space.

PUSH criterion (i) specifies that the pushed operation op is able
to move to the left of all unpushed operations in the local log. This,
intuitively, means that we can publish op as if it was the next thing
to happen after all the operations published thus far by the current
transaction. Here we have lifted ◂ to lists:

L1 ◂ L2 ≡ ∀ op1 ∈ L1, op2 ∈ L2. op1 ◂ op2

and defined projections such as ⌊L1⌋unpushed using:

⌊L1⌋l ≡ map fst (filter (λ(op, l′). l = l′) L1)
We have similarly defined ⌊G⌋gUCmt.

Application: Most existing implementations satisfy this triv-
ially because operations are PUSHed in the same order that
they are APPLYed.
Application: In STMs that use redo-logs [9, 35] out-of-
order PUSHing may occur. These implementations collect
the write-set (e.g. {x = 1; y = 2; z = 3; x = 4;})
in a hashtable and, just before committing, may PUSH
these writes to the shared log in the order they appear
(e.g. {(x,4),(y,2),(z,3)}) in the hashtable. This can
be viewed as out-of-order PUSHing where, furthermore, the
PUSH of (x,4) is viewed as a PUSH of (x,1) immediately
followed by a PUSH of (x,4)2.

PUSH criterion (ii) is that all uncommitted operations in the shared
log ⌊G⌋gUCmt—except those due to the current transaction–can
move to the right of the current operation op. This condition ensures
that if the transaction commits at any point, it can serialize before
all concurrent uncommitted transactions. (Recall that we have lifted
∖ to lists where equality is given by the operation IDs and the order
is determined by the first operand, in this case G1.)

Applications: A boosted transaction immediately performs
a PUSH at the linearization point because it modifies the
shared state in place. Optimistic STMs don’t perform PUSH
until commit-time (unless there is some early conflict de-
tection [13] which involves a form of PUSH. In boosted [11]
and open nested [30] transactions, a commutativity require-
ment is sufficient to ensure this condition.

PUSH criterion (iii) is that op is allowed by the sequential speci-
fication of the global log. (Here we have lifted allowed to global
logs.)

Note these APPLY, PUSH, PULL rules are about operations,
which include reads as well as writes. For example, when a trans-
action PUSHes a read it is effectively announcing to the shared log
the fact that it is accessing the particular memory location. This
fact is crucial to how we can show that snapshot isolation violates
serializability.

The UNPUSH rule. An operation op that has been PUSHed to
the shared log can be UNPUSHed. This amounts to swapping the
local flag from pushed to unpushed and removing the corresponding
global log entry for op. PUSH criterion (i) ensures that G2 does
not depend on op and PUSH criterion (ii) is that everything pushed
chronologically after op could still have been pushed if op hadn’t
been pushed. Note that PUSH criterion (i) is not strictly necessary
because we can prove that it must hold whenever an UNPUSH
occurs.

2 We thank an anonymous reviewer for this example.

Application: When a boosted transaction aborts (e.g. due to
deadlock) it must undo its effects on the shared state. This
is modeled via the UNPUSH rule and typically implemented
via inverse operations (such as remove on an element that
had been added). The UNPUSH rule is also needed in open
nested transactions [30] and for ensuring liveness [3].

The PULL rule. Transactions can learn about the published ef-
fects of other transactions by PULLing operations from the global
log into their local logs. An operation op can be pulled from the
global log provided that is wasn’t pulled before (PULL criterion (i))
and that the local log allows it (PULL criterion (ii)) according to
the sequential specification. A transaction can only learn about the
shared state through PULLing. In most applications, a transaction
will PULL operations in chronological order. However, there are
many examples for which this is not true. In a transaction that op-
erates over two shared data-structures a and b, it may PULL in the
effects on a even if they occurred after the effects on b because the
transaction is only interested in modifying a. When the PULL rule
occurs, the operation is appended to the local log L and marked as
pulled.

Finally, PULL criterion (iii) is that everything that the current
transaction has currently done locally must be able to move to the
right of op. This ensures that the transaction can behave as if the
pulled effect preceded the transaction. We have marked this crite-
rion in gray, indicating that it is not strictly necessary. One could
imagine allowing transactions to PULL uncommitted, conflicting
effects. However, we don’t believe such behaviors to be particu-
larly interesting or realistic.

Application: Many traditional STMs are opaque [10] (trans-
actions cannot view the effects of other uncommitted trans-
actions). Such systems never execute PULL operations
marked as gUCmt and can only view operations that have
been marked gCmt.
Application: Some (non-opaque) transactionAmay become
dependent [32] on another transaction B if the effects of B
are released to A before B commits. This is captured by B
performing a PUSH of some effects that are then PULLed by
A even though B has not committed.
Application: So-called consistency in validation and times-
tamp extension [33].

The UNPULL rule. A PULLed operation may be removed from
the local log. UNPULL criterion (i) is that the local log is allowed
without operation op. Informally, this means that the transaction
must not have done anything that depended on op. Without this
criterion the local log might become invalid with respect to the
sequential specification.

Applications: Breaking dependencies [32], open nested
transactions [30], liveness [3].

The CMT rule. If there is a path through tx c that reaches skip
(CMT criterion (i)), then the transaction can commit. There are three
additional conditions: CMT criterion (ii) is that the local log L1

must be contained within the global log G1, indicating that all of
the transaction’s operations have been pushed. CMT criterion (iii)
says that all pulled operations correspond to transactions that have
been committed. Finally, CMT criterion (iv) is that the global log
is updated to G2 in which all of the transaction’s operations are
marked as committed. This is achieved with the cmt(G1, L1,G2)
predicate, defined at the bottom of Figure 4. The CMT rule serves
as the instantaneous moment when all of a transaction’s effects
become permanent. Note that a transaction does not have to PULL
all committed operations. Instead, transactions check whether they
conflict with other transactions’ operations each time they PUSH an
operation.



We strived to design the Push/Pull model such that it en-
compasses all serializable systems that we know of. To date, we
have not found any (serializable) implementations that cannot be
described by this model. Systems such as distributed transac-
tions, P2P communications and concurrent revisions [2] are non-
serializable and certainly fall outside of the Push/Pull model.

5. Serializability
We have proved serializability of the Push/Pull machine, via a
simulation between a Push/Pull machine and the atomic semantics.
For lack of space, we merely describe the structure of the proof.
The full proof can be found in the companion technical report [19].

Preservation invariant. The heart of the simulation requires that
we prove an invariant of the system that the shared log is equivalent
to what it would be if concurrently executing transactions removed
their PUSHed effects and instead PUSHed them atomically. More
precisely, imagine that at a given moment there is a shared log G,
and a given thread T = {c, σ,L} atomically marks all of its pushed
operations as committed, reaching a shared log of Gpost. Note that
T may still have unpushed operations ⌊L⌋unpushed. The invariant
states that there is a precongruence between the shared log reached
by completing T from Gpost ⋅ ⌊L⌋unpushed and the shared log that
would have been reached if T rewound itself and atomically ran the
entire transaction from G (that is, G ∖ L, i.e. the previous shared
log, with all operations belonging to T filtered out). As described
so far, the commit preservation invariant (which holds for each
T = {c, σ,L} and G) would look like the following:

∀Gpost. cmt(G,L,Gpost) ⇒
∀σ′, `a. (c, σ),Gpost ⋅ ⌊L⌋unpushed ⇓ σ′, `a ⇒
∃`b. otx({c, σ,L}),G ∖L ⇓ σ′, `b ∧ `a ≼ `b

where otx rewinds the transaction to its original state/code,
recorded in L.

Partial rewind. This is not enough to give us the simulation result
as the property is not an invariant. As the system makes steps that
undo operations from the logs, the property must be closed with
respect to these backwards steps. Thus we need the above to hold
after any partial rewinding of the local log and/or partial removal
of other transactions’ uncommitted operations in the shared log. We
define a self-rewind relation denoted

{c, σ,L},G ↺self {‘c, ‘σ, ‘L}, ‘G
which allows us to cope with the fact that a transaction may have
PULLed operations from another uncommitted transaction. In par-
ticular, we preserve the fact that the transaction may be able to de-
tangle from the uncommitted transaction, and atomically commit.
We also define a shared log partial rewind denoted G ↺L ‘G
which permits uncommitted operations of other transactions (i.e.
excluding operations in L) to be dropped from the shared log.

The preservation invariant as follows:

Definition 5.1 (Commit preservation invariant). For all G,

∀‘‘G. G ↺L ‘‘G. ⇒ (0)
∀{‘c, ‘σ, ‘L}. {c, σ,L}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (1)
∀Gpost. cmt(‘G, ‘L,Gpost) ⇒ (2)
∀σ′, `a. (‘c, ‘σ),Gpost ⋅ ⌊‘L⌋unpushed ⇓ σ′, `a ⇒ (3)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖L ⇓ σ′, `b ∧ `a ≼ `b (4)

Intuitively, this invariant means that under any dropping of oth-
ers’ uncommitted operations (Line 0) and after partially rewinding
↺self the local transaction to some local log ‘L (Line 1), if the
transaction is now able to atomically “commit” by swapping com-
mit flags (Line 2) and running the rest of the transaction (Line 3),
then the shared log reached `a, is contained within a shared log

`b that would have been reached if the thread appended its entire
transaction to G atomically.

Theorem 5.1 (Serializability). Push/Pull is serializable.

Proof. The full proof can be found in our technical report [19].
Here we instead sketch the proof, which is via a simulation relation
between↝ and

aÐ→. The simulation relation is defined as follows:

T,G ∼ A, ` ≡ (map rewind T) =A ∧ ⌊G⌋gCmt ≼ `
where rewind T rolls a transaction back to its original code. We
define T ∼ A and G ∼ ` with the appropriate conjunct from
above.

We must consider each ↝ step from Figure 4 and show that an
appropriate A′, `′ can be found. In each case, the inductive hypoth-
esis gives us that the simulation relation rewinds all uncommitted
transactions in T to obtain A and drops all uncommitted opera-
tions from G to obtain `. Moreover, we rely on several invariants
holding for T,G as well as T′,G′ (most significantly, the commit
preservation invariant).

Most cases are trivial, because we map T′,G′ to the previous
A, `. The exception is the CMT case, where we use the preservation
invariant to show that after a CMT, we can find a new atomic
machine configuration that maintains the simulation relation.

6. Implementations
We now discuss how our model can be used to reason about a wide
variety of implementations in the literature. In each case, we recast
the implementation strategy in terms of the Push/Pull model and
discuss how the implementations satisfy the conditions of each rule
in Push/Pull.

Opacity. For general Push/Pull transactions, opacity [10] does not
necessarily hold: transactions may view the uncommitted effects of
other concurrent transactions. However, there are several ways that
we can characterize opacity as a fragment of Push/Pull transactions.
For example, if transactions do not perform PULL operations during
execution then they are opaque.

We can take things a step further. An active transaction T may
PULL an operation op′ that is due to an uncommitted transaction
T ′ provided that T will never execute an op that does not commute
with op. This suggests an interesting way of ensuring opacity while
PULLing uncommitted effects by examining (statically or dynami-
cally) the set of all reachable operations a transaction may perform.

Optimistic Models. STMs such as TL2 [6], TinySTM [8], McRT
STM [34] are optimistic (or mostly-optimistic) and do not share
their effects until they commit. Transactions begin by PULLing
all operations (there are never uncommitted operations) by simply
viewing the shared state. As they continue to execute, they APPLY
locally and do not PUSH until an uninterleaved moment when they
check the second PUSH condition on all of their effects (which is
approximated via read/write sets) and, if it holds, PUSH everything
and CMT. Effects are pushed in order so the first PUSH condition is
trivial. If a transaction discovers a conflict, it can simply perform
UNAPPLY repeatedly and needn’t UNPUSH.

Transactions that use checkpoints [18] and (closed) nested
transactions [29] do not share their effects until commit time.
They are similar to the above optimistic models, except that place-
markers are set so that, if an abort is detected, UNAPPLY only needs
to be performed for some operations.

Pessimistic Models. Matveev and Shavit [27] describe how pes-
simistic transactions can be implemented by delaying write oper-
ations until the commit phase. In this way, write transactions ap-
pear to occur instantaneously at the commit point: all write opera-
tions are PUSHed just before CMT, with no interleaved transactions.



Consequently, read operations perform PULL only on committed
effects. Boosting [11] is also a pessimistic model, as discussed in
Section 2.

Mixed Models. For the irrevocable transactions of [39], there is
at most one pessimistic (“irrevocable”) transaction and many opti-
mistic transactions. The pessimistic transaction PUSHes its effects
instantaneously after APPLY.

Reading Uncommitted Effects. As discussed in Section 4, the
early release mechanism [13] and dependent transactions [32] can
be modeled with Push/Pull. In early release, an executing transac-
tion T communicates with T ′ to determine whether the transac-
tions conflict. This is modeled as T ′ performing a PUSH(op) and T
checking whether it is able to PULL(op). A dependent transaction
T will PULL the effects of another transaction T ′. This comes with
the stipulation that T does not commit until T ′ has committed. If
T ′ aborts, then T must abort. However, note that T must only move
backwards (via ⇁bwd ) insofar as to detangle from T ′.

7. Implementations That Are Yet to Come
The Push/Pull model is expressive, permitting transactions to an-
nounce their effects in orders different from the way they are done
locally (see the PUSH rule). Moreover, transactions can undo their
effects in different orders from the order they were announced in
(see the UNPUSH rule).

The utility of this expressiveness can be demonstrated by a
more elaborate yet-to-be-implemented setting: combining hard-
ware transactions with boosting [11]. Transactions in hardware are
optimistic in nature, while boosting is pessimistic. Consequently,
the order of APPLY, PUSH and PULL and the undo operations UN-
APPLY, UNPUSH and UNPULL must be very flexible. For boosting,
one needs to PULL all operations on the data-structure, APPLY the
current operation, and then PUSH the operation immediately. For
a hardware transaction, we initially PULL operations for the cur-
rent snapshot of the memory location in question, and merely AP-
PLY it locally, saving the PUSHing until the final commit. Thus we
need to leverage the semantics’ support for PUSHing in arbitrary or-
ders. Adding the possibility of transactions failing at various points,
leads to the need for flexibility in the order of undo operations as
well.

Consider the following example transaction that accesses a
boosted version of a ConcurrentSkipList and a boosted version
of a ConcurrentHashTable, as well as integer variables size, x,
and y that are controlled via a hardware transactional memory [16]:

1 BoostedConcurrentSkipList skiplist;
2 BoostedConcurrentHashTable hashT;
3 HTM int size;
4 HTM int x, y;
5
6 atomic {
7 skiplist.insert(foo);
8 size++;
9

10 hashT.map(foo => bar);
11 if (*)
12 x ++;
13 else
14 y ++;
15 }

Let us say that execution proceeds, modifying the skiplist, in-
crementing size, updating the hashT, and the following the if
branch. At this underlined point when x is about to be incremented,

Transaction begins. PULL(snapshot of HT vars x,y,size)
PULL(all skiplist operations)
APPLY(skiplist.insert(foo)),
PUSH(skiplist.insert(foo)),
APPLY(size++),
PULL(all hashT operations)
APPLY(hashT.map(foo=>bar)),
PUSH(hashT.map(foo=>bar)),
APPLY(x++),

Push HTM ops: PUSH(size++),
PUSH(x++),

HTM signals abort. UNPUSH(x++),
UNPUSH(size++),

Rewind some code: UNAPPLY(x++),

March forward again: APPLY(y++),

Uninterleaved commit: PUSH(size++),
PUSH(y++),
CMT

Figure 5. Decomposing behavior in terms of Push/Pull rules.

let us say that the hardware transactional memory detects a conflict
with a concurrent access to x.

The Push/Pull model shows that the implementation can rewind
(UNPUSH) the effects of the HTM, but leave the effects of the
boosted objects (which are expensive to replay) in the shared view.
So the HTM can discard the effects to x and size with UNPUSHP,
perform a partial rewind via UNAPPLY, then execute Lines 11–15.

In terms of the Push/Pull model, the transaction has performed
the rules given in Figure 5. This figure decomposes the elaborate
behavior into the simple Push/Pull rules. We can then construct a
correctness argument for the example from the criteria of each rule,
and the hard work of the simulation proof is done for us.

8. Related Work
In our prior work we provided a formal semantics for abstract-
level data-structure transactions [20]. This prior semantics sepa-
rated pessimistic models from optimistic ones. The model pre-
sented in this paper is more expressive because it permits mix-
tures of these two flavors. This is useful when combining hard-
ware [15, 16] with abstract-level data-structure [11] transactions.
Moreover, Push/Pull transactions may observe the effects of un-
committed, non-commutative transactions as seen in dependent
transactions [32] and open nesting [30].

Others [22] describe a method of specifying and verifying TM
algorithms. They specify some transactional algorithms in terms
of I/O automata [26] and this choice of language enables them
to fully verify those specifications in PVS. In our work, we have
aimed at a more abstract goal: to uncover the fundamental nature of
transactions in the form of a general-purpose model. We leave the
goal of full algorithm verification (and automated tools) to future
work.

There are other works in the literature that are focused on a vari-
ety of orthogonal semantic issues, including the privatization prob-
lem [1, 28, 36], correctness criteria such as dynamic/static/hybrid
atomicity [38], and message passing within transactions [23].
These works are concerned with models that are restricted to
read/write STMs and limited in expressive power (e.g. restricted
to opacity [10]). Others have looked at ways to decompose proofs
of opacity [24]. Semantics also exist for other programming models
that are similar to transactions [2] but are not serializable. Finally,



[5] described some small hand proofs for particular transactional
memory algorithms.

9. Conclusions and Future Work
We have described an expressive model of transactions and shown
that it is capable of serving as proof of serializability for a wide va-
riety of transactional memory algorithms. We work with pure logs
and develop a model in which transactions pass around their effects
by PUSHing to or PULLing from a shared log. The model gives rise
to simple proof rules that allow us to more easily construct proofs
for a wide range of transactional behaviors—optimism, pessimism,
opacity, dependency, etc.—all within a unified treatment.

As a next step we plan to formalize our work in a proof assistant.
Another important avenue of future work is to develop models of
existing implementations and show that they are serializable using
the Push/Pull model.
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