
Dreadlocks: Efficient Deadlock Detection

Eric Koskinen
Computer Science Department

Brown University
Providence, RI 02912
ejk@cs.brown.edu

Maurice Herlihy
Computer Science Department

Brown University
Providence, RI 02912

mph@cs.brown.edu

ABSTRACT
We present Dreadlocks, an efficient new shared-memory
spin lock that actively detects deadlocks. Instead of spinning
on a Boolean value, each thread spins on the lock owner’s
per-thread digest, a compact representation of a portion of
the lock’s waits-for graph. Digests can be implemented ei-
ther as bit vectors (for small numbers of threads) or as
Bloom filters (for larger numbers of threads). Updates to
digests are propagated dynamically as locks are acquired
and released. Dreadlocks can be applied to any spin lock
algorithm that allows threads to time out. Experimental
results show that Dreadlocks outperform timeouts under
many circumstances, and almost never do worse.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management –
Deadlocks; D.1.3 [Programming Techniques]: Con-
current Programming – Parallel Programming; D.4.1
[Operating Systems]: Process Management – Synchro-
nization; Threads; Concurrency

General Terms
Algorithms, Reliability, Theory

Keywords
Concurrency, parallel programming, deadlock, deadlock de-
tection, bloom filters, transactional memory

1. INTRODUCTION
Concurrent programs often rely on locks to avoid race

conditions as threads access shared data structures. Unfor-
tunately, programs with locks may deadlock when threads
attempt to acquire locks held by one another.

Well-studied approaches for dealing with deadlocks in the
context of distributed systems and databases often do not
work well for shared-memory multiprocessors. Deadlock

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

avoidance is impractical because the set of resources is typi-
cally not known in advance. Deadlock detection, which typ-
ically involves tracking and detecting cycles in a thread-to-
resource graph, is too expensive.

As a result, many shared-memory applications are either
carefully structured to avoid deadlock, or employ timeouts
to recover from deadlock. While hand-crafted deadlock-
avoidance has been successful for high performance libraries
such as java.util .concurrent, it is likely to be too complex
for everyday use by average programmers. Also, timeouts
must be chosen with care: too short a duration produces
false positives, and too long wastes resources. Moreover, a
timeout duration that works well for one application and
platform may perform poorly elsewhere.

This paper presents the Dreadlocks family of deadlock-
detecting locks. An attempt to acquire such a lock may
result in a return value (or exception) indicating that the
lock acquisition was aborted to avoid a possible deadlock.
As such, this algorithm is appropriate for concurrent appli-
cations that are prepared to to deal with lock acquisitions
that abort. Our algorithm can be applied to any spin lock
that allows lock acquisition requests to abort. For reasons of
space, we focus here on a simple test-and-test-and-set lock,
where it is trivial to abandon a lock acquisition request. It is
straightforward to adapt Dreadlocks to queue-based spin
locks (by adapting [18]).

As an example of an application that is inherently capa-
ble of dealing with abortable lock requests, we focus here on
software transactional memory (STM). STM has emerged
as a compelling alternative to programming with user-level
locks, promising better scalability and composability. Nev-
ertheless, the Dreadlocks algorithm is broadly applicable
to any concurrent application that allows lock acquisitions
to abort.

Many modern STM implementations are subject, at least
in principle, to deadlock. Early STMs were based on non-
blocking algorithms. More recent efforts [6, 7, 5, 17] employ
locks. To the extent that the papers describing these systems
address deadlock, they seem to rely on carefully engineered
timeouts.

Dreadlocks is a simple, practical deadlock-detecting spin
lock for shared-memory multiprocessors. Each thread main-
tains a digest of the waits-for graph, which is the transi-
tive closure of a portion of the entire graph. Changes to
the waits-for graph are propagated as threads acquire and
release locks, and a thread detects deadlock when its own
identifier appears in its digest. This approach avoids the
elaborate probing mechanisms or explicit waits-for graphs

common to distributed deadlock-detection algorithms. Ex-
perimental results show that Dreadlocks outperform time-
outs under many circumstances, and almost never do worse.

We provide a brief background on deadlock and the canon-
ical waits-for thread/resource graph in Section 2. We then
present the Dreadlocks algorithm in Section 3. We present
the core correctness result in Section 4 and discuss various
compact representations in Section 5. In Section 6 we show
how to build a deadlock-detecting TTAS spin lock using
Dreadlocks and several applications are explored in Sec-
tion 7. Finally, we provide experimental evaluations in Sec-
tion 8 and discuss related work in Section 9.

2. DEADLOCK
Deadlock detection is a well-studied topic in both dis-

tributed systems [19] and databases [12]. Deadlock can be
detected by examining which threads are waiting for which
resources. For example, two threads may attempt to acquire
the following locks before executing a critical section:

Thread A: x, y, z

Thread B: z, a, b, c, x

Deadlock is possible if A tries to acquire lock z after B has
already acquired z. Thread A will continue to try to acquire
z, holding on to x and y as well. Eventually, B will try to
acquire x and deadlock is reached: each thread is trying to
acquire a lock held by another thread.

Deadlock can be represented as a cycle in a graph of
threads and resources. Above, the cycle is

→֒ A → z → B → x

This is read as“thread A tries to acquire z, which is acquired
by B, which is trying to acquire x, which is (cyclically) held
by A.” Almost every deadlock detection strategy in dis-
tributed systems or databases is based on a waits-for graph
linking threads and resources. None of these approaches ap-
pears to be practical for spin locks in shared-memory mul-
tiprocessors.

3. EFFICIENT DEADLOCK DETECTION
We now present our algorithm. Deadlock detection is re-

alized by tracking which threads are waiting for which re-
sources. When a cycle is detected, deadlock has occurred.
Rather than tracking the waiting relation as an explicit
graph, we use thread-local digests.

Let T ∈ N represent threads and R ∈ N represent re-
sources. Further, we define owner : R → T to map resources
to the threads which currently hold them.

Definition 3.1. Thread T ’s digest, denoted DT , is the
set of other threads upon which T is waiting, directly or in-
directly.

The value of a given thread’s digest depends on the thread’s
current state:

1. If thread T is not trying to acquire a resource,
DT = {T}

2. If T is trying to acquire a resource R,
DT = {T} ∪ Downer(R).

A thread trying to acquire a resource has a digest which in-
cludes itself as well as the digest of the resource’s owner.

y C

A x B

D

Thread

Resource
Held by

Acquiring

Acquiring Next

Figure 1: Example of an explicit waits-for graph,

of which Dreadlocks maintains small per-thread di-

gests.

Moreover, the owner may itself be acquiring another re-
source and so the digest represents the transitive closure
of the thread-centric waits-for graph. When a thread begins
to acquire a resource (moving from state 1 to state 2 above),
it detects deadlock as follows:

Definition 3.2. Thread T detects deadlock when acquir-
ing resource R if T ∈ Downer(R).

Consider the waits-for graph given in Figure 1, ignoring
the dotted line for the moment. Thread A is attempting to
acquire lock x held by thread B which, in turn, is trying to
acquire lock y held by thread C. Thread D is also trying
to acquire lock y. Following the above rules, digests for this
example are as follows:

DC = {C}

DD = {C, D}

DB = {C, B}

DA = {C, B, A}

The dotted line indicates that thread C tries to acquire
lock x. It discovers itself in DB , detects a deadlock has been
reached, and aborts.

Digest Propagation Threads must propagate updates
to digests to maintain per-thread transitive closures. As
discussed in Section 6, each lock must provide a field that
references its owner’s digest.

4. CORRECTNESS
The digest DA for a thread A is essentially a mutable

set, with the following sequential specification. If thread B

is a member of DA, then a call to DA.contains(B) returns
true. If B is not a member, the call can return either true
or false, meaning that a digest is allowed false positives,
indicating that a thread is present when it is not, but no
false negatives, indicating that a thread is absent when it is
not. False positives may cause unnecessary aborts, and are
acceptable if they are sufficiently rare. False negatives may
cause deadlocks to go undetected, and are not acceptable1.

There are two mutator methods: DT . setSingle (A) sets
the digest to {A}, and DT .setUnion(A,DS) sets the digest to
{A} ∪ DS , where A is a thread and DS is another digest.

1Transient false negatives may be acceptable.

For concurrent executions, we assume digest operations
are linearizable [9]: each method call appears to take place
instantaneously at some point between its invocation and
its response. Linearizability is stronger than necessary. For
example, contains() calls that overlap mutator calls could
return arbitrary results without affecting the correctness of
the deadlock-detection algorithm. (If a deadlock occurs, the
mutator calls eventually quiesce, and contains() calls eventu-
ally return correct results.) For brevity, however, we assume
linearizability.

When thread A tries to acquire a lock held by thread B,
A sets DA to the union of DB and {A}. A then spins on
both DB and a Boolean field indicating whether the lock is
free. If A appears as a member of DB , then A detects a
deadlock and aborts the lock acquisition. Otherwise, if DB

has changed, then A again updates its digest to be the union
of DB and {A}. Note that A is spinning on locally cached
values for as long as B holds the lock and B’s digest does
not change.

Theorem 4.1. Any deadlock will be detected by at least
one thread.

Proof. Consider a cycle of threads, each holding some
locks and acquiring another. Any given thread in the cycle
A, trying to acquire a lock held by B, will spin on B’s digest
DB as described above. Even if A sees an inconsistent state
of DB, eventually B will finish updating its digest, and A

will see DB in a consistent state. A will then update its own
digest to be DB ∪ {A}. The same argument applies to the
thread spinning on A’s digest and so on. Eventually B will
mutate its digest again, now with the additional propagated
values. When B finishes the mutation, A will find A ∈ DB

and declare deadlock.

Note that more than one thread in a cycle may detect
a deadlock and abort, even though it was necessary only
to abort one such thread. While we expect such spurious
aborts to be rare, they do not affect the correctness of the
algorithm.

5. COMPACT SET REPRESENTATION
An efficient implementation of Dreadlocks must com-

pactly represent sets. In this section, we discuss some rep-
resentations, and provide a complexity analysis of each. In
each case, let n be the number of threads, r the number of
resources. Fundamentally, the algorithm only requires the
Set operation clear () and the two discussed in the previous
section: setSingle () and setUnion().

A note on atomicity. Given a moderate number of threads,
a digest can fit in a single (32 or 64-bit) word, and the di-
gest updates considered here can be implemented as atomic
bit-wise shifting or masking operations. If, however, the
digest must occupy multiple words, then digest operations
may not be atomic, but must be linearizable [9]. Nonethe-
less, a membership test that overlaps an update may observe
an inconsistent state. All is well as long as such inconsisten-
cies are rare and transient. If inconsistencies are rare, then
false positives will not be expensive. If inconsistencies are
transient, then so are false negatives.

5.1 Bit Vectors
Thread-Centric. Today, there are typically many more

locks than active threads, so it makes sense for threads to

track one another in the waits-for graph. If thread iden-
tifiers can be mapped efficiently to unique small integers,
then it is sensible to represent a digest as a bit-vector: the
thread mapped to index i is present only if the ith bit is
true. All three set operations can be implemented with sim-
ple bit masking. Since each must keep track of the others,
this approach requires O(n2) bits.
Lock-Centric. If active threads outnumber active locks,
it is sensible to use digests to track locks instead of threads.
The example illustrated in Figure 1 would look like this:

Dy = {y}

Dx = {x, y}

When thread C attempts to acquire resource x, it compares
Dx with the digests of the resources it holds, finding that
y ∈ Dx and y ∈ Dy , thus detecting a deadlock. The time
complexity for lock-centric bit vectors is constant, and the
space complexity is quadratic in resources: O(r2)

5.2 Bloom Filters
If it is not practical to map thread IDs to unique small

integers, Bloom filters [1] provide a compact way to repre-
sent sets taken from a large domain. A set implemented in
this way may, with low probability, provide false positives:
claiming an item is in the set when it is not, but will never
provide a false negatives: denying that an item is in the set
when it is. False positives are undesirable because they cause
unnecessary aborts, which are inefficient. False negatives are
unacceptable because deadlocks would go undetected.

Here is how to implement a Bloom filter. There are k

distinct hash functions, hi : e → N, 0 ≤ i < k, each of which
maps an item to a value in the range [0, . . . , m−1]. The filter
itself is an m-element Boolean array A. If an item x is in the
set, then we set A[hi(x)] to true, 0 ≤ i < k. Naturally, if x is
not actually in the set, then it is possible (but unlikely) that
all A[hi(x)] are true, so a membership test would return a
false positive.

Bloom filters are space efficient. A simple analysis based
on [1] yields the following formula, which characterizes the
size of the Bloom filter m as a function of the number of
expected items n and an acceptable false positive rate p:

m =
1

1 −
“

1 − p
1

k

” 1

2kn

Thus, the space complexity is either nm or rm, depending
on whether a thread-centric or resource-centric approach is
taken. As an example, let us say that we have 1000 threads,
but only expect digests to contain about n = 5 elements
at a time. If we accept a false positive rate p of 0.05, then
k = 4 hash functions yields a minimum value of m ≈ 63.
Thus, each thread can store this quantity in a single 64-bit
word. Here, using Bloom filters reduces the space of digests
by about 94%. Bit vectors would use nn = 1, 000, 000 bits
as compared to Bloom filters using nm = 64, 000 bits. We
leverage the ability of Bloom filters to compactly represent
few elements (identifiers of threads in digests) taken from a
large domain of values (all thread identifiers).

Computing k hash functions can be time consuming, but
can be done statically or once during initialization. Each
thread must know its own hash signature so that it can
insert and check for itself in digests. All other operations
can be implemented with bit masking.

1 public class TTASLock implements Lock {
2 AtomicReference<Set<Thread>> state =
3 new AtomicReference<Set<Thread>>();
4 public void lock() {
5 Thread me = Thread.currentThread();
6 while (true) {
7 // spin while lock looks busy
8 while ((owner = state.get()) != null) {
9 if (owner.contains(me)) {

10 throw new AbortedException();
11 } else if (owner.changed()) {
12 // back−propagate digest
13 me.digest .setUnion(owner, me);
14 }
15 }
16 // lock looks free , try to acquire
17 if (state .compareAndSet(null, me)) {
18 me.digest . setSingle (me);
19 return;
20 }
21 }
22 }
23 }

Figure 2: Pseudo-code implementation of a Dread-

locks test-and-test-and-set lock.

6. SPIN LOCKS
Test-and-test-and-set (TTAS) spin locks are similar to

traditional test-and-set locks, but cause less memory con-
tention. Rather than repeatedly trying to perform an atomic
swap operation, a TTAS lock waits until the lock appears
to be free before attempting an atomic swap. Here is the
pseudo-code for a TTAS lock:

public class TTAS implements Lock {
AtomicBoolean locked = new AtomicBoolean(false);
public void lock() {

while (true) {
while (locked) { }
if (locked .compareAndSet(false, true))

return;
}

}
}

Figure 2 shows a Dreadlocks TTAS lock. Instead of
representing the lock state as a Boolean value, we use a ref-
erence to the owning thread’s digest (a Set<Thread> (Line
3)).

When a thread acquires a lock, it sets the lock’s state to to
its own digest (Line 17), and resets its digest to contain only
its own ID. If the lock is held by another thread, then, as
described earlier, it unions the owner’s digest with its own,
and spins waiting for the lock state to become null. The
thread also spins on the owner’s digest, and aborts if it finds
itself there (Line 10). As long as the owner’s digest does
not change, the spinning thread accesses its cached copy of
the digest, and produces no bus traffic. If the digest does
change, the change is propagated to the spinning thread’s
digest (Line 13).

7. APPLICATIONS
As noted, deadlock detection makes sense only for ap-

plications that have a meaningful way to recover from a
failed lock acquisition. Software transactional memory and
database systems are two significant domains in which the
notion of an abort is well-defined. We now discuss these two
in turn.

7.1 Lock-Based Transactional Memory
As mentioned earlier, a number of STM proposals are

vulnerable to deadlock. In Ennals’ STM [7], Transactional
Locking II (TL2) [5] and Intel’s McRT [17], deadlocks are
possible (but not feared!) and are resolved using timeouts.
Interestingly, TL2 could have avoided deadlocks by sorting
the addresses of memory locations to be locked, but the cost
of sorting those addresses was deemed too high.

The deadlock-free TTAS lock discussed above is directly
applicable to modern lock-based STM implementations such
as TL2 [5] and McRT [17]. Rather than associating two-
phase locks with memory locations, our deadlock-free TTAS
locks can be used instead. Thus, when two threads are about
to deadlock, having acquired the same memory locations in
opposite orders, an abort exception can be thrown. More-
over, aborting threads to escape deadlock can be treated the
same as the STM’s facility for aborting conflicting transac-
tions. Transactional user code is written with the assump-
tion that at any point, a transaction may abort and roll back
to the beginning.

In recent work we presented transactional boosting [8],
which is an alternative lock-based transactional memory ap-
proach. Conventional STMs detect conflicts based on read-
/write sets. By contrast, transactional boosting is built on
linearizable base objects. These objects have known seman-
tics which describe the commutativity of method calls: two
method invocations are said to commute if applying them
in either order causes the object to transition to the same
state and respond with the same return values. Boosted
transactions acquire abstract locks before accessing a data
structure. These locks conflict whenever a pair of methods
do not commute. Thus, the locks prevent non-commutative
operations of distinct transactions from executing concur-
rently since one transaction will be delayed.

As with conventional STMs based on read/write sets, dead-
lock is possible in transactional boosting. However, Dread-

locks is an immediate solution. Abstract locks can be re-
placed with the deadlock-free TTAS locks. Then transac-
tions can detect deadlock as they acquire abstract locks,
and abort before deadlock is reached.

7.2 Distributed Systems, Databases
Our mechanism also has applications beyond software

transactional memory. This scheme can be used in lock-
based multi-threaded programming, as well as in distributed
systems and distributed database. Many existing systems
such as MySQL and PostgreSQL already have code paths
for recovering from deadlock, so timeout strategies could be
replaced with the deadlock detection scheme presented here.

8. EVALUATION
We evaluated our approach by augmenting our implemen-

tation of transactional boosting [8] with Dreadlocks. Both
transactional boosting and the underlying transactional mem-
ory infrastructure (TL2 [5]) are written in C. The tests were

0

count digest

count digest

2
010001001

Locked

count digest

1
010001001

Unlocked

Reaquired

count digest

2
Owner is
spinning on
another lock

010111001

Figure 3: Diagram of a TTAS augmented with a

hold counter.

run on a multiprocessor with four 2.0 GHz Xeon proces-
sors, each one two-way hyper-threaded for a total of eight
threads. We implemented the deadlock-free test-and-test-
and-set (TTAS) lock with both bit vectors and Bloom fil-
ters.

As discussed in Section 7.1, deadlock occurs when threads
try to acquire abstract locks in the wrong order. Previously
we used timeouts to escape deadlock, but it is difficult to
chose a suitable timeout. A timeout that is too short will
generate unnecessary aborts, where as an excessively long
timeout leaves threads spinning after deadlock has occurred.
We suspected that Dreadlocks would provide a single al-
gorithm suitable to resolving deadlock in many workloads.

We ran a benchmark consisting of seven threads concur-
rently accessing a shared array of 50 bins. Each thread ex-
ecuted 250 transactions, each time acquiring abstract locks
for the relevant bins. Bins were chosen randomly so we aug-
mented the TTAS lock to include hold counts. Figure 3
shows a diagram of the augmented lock. Initially, the lock is
unacquired: the digest is null and the count is 0. A thread
atomically acquires the lock by swinging the pointer from
null to its own digest and subsequently incrementing the
counter. The lock is incremented each time it is re-acquired
and decremented each time it is released until the count
reaches 0 and the pointer is swapped back to null. As shown
on the final line, the owner may be acquiring another lock
and updating its digest.

Figure 4 shows the throughput of TTAS locks as the num-
ber of operations per transaction is increased. The dashed
line shows the performance of a TTAS lock with Dread-

locks (pseudo-code is given in Figure 2), whereas solid lines
show the performance of a similar TTAS lock with timeouts.
The timeout-based TTAS locks do not track digests but in-
stead decrements a counter and aborts when the counter
reaches zero. The timeouts lengths used are given in the
inset legend (in number of loop cycles). The results shown
here are the average over 40 runs.

The graph in Figure 4 shows that for this particular work-
load, Dreadlocks out-performed the long timeouts, but
was comparable to zero-length timeouts (the trend line with
diamond-shaped nodes). As we will see shortly, there are
other workloads for which the opposite is true: Dread-

locks out-performs zero-length timeouts but is comparable

Figure 4: Throughput of transactions accessing a

shared array, using Dreadlocks to detect deadlock

versus spin locks with timeouts.

Figure 5: Throughput of transactions accessing a

shared array, where locks are acquired in a canonical

order and thus no deadlock is present.

to longer timeouts. But in this workload, we believe that
the cost of aborting (as well as releasing and re-acquiring
abstract locks) is so low that it approaches the performance
of deadlock detection. To the left of the graph, when con-
tention is low, the overhead of maintaining digests yields
slightly worse performance for Dreadlocks. However as
contention increases the cost of timeouts starts to dominate
and Dreadlocks out performs long timeouts.

By contrast, consider Figure 5 in which the same shared
object was used. Unlike Figure 4, however, transactions ac-
cess array bins in a canonical order: lower numbered bins are
accessed before higher numbered bins. For such a workload
deadlock is impossible and so the ideal timeout is infinite. As
the figure indicates, timeouts of zero length perform poorly,
whereas longer timeouts more closely approximate infinity.
Dreadlocks performs similar to long timeouts, but has a
slight overhead of maintaining and comparing digests.

We ran another benchmark which compares the through-
put of various compact set representations. Here each thread
executes 250 transactions, each time accessing seven ran-
domly chosen bins from an array of 50 bins. Figure 6 shows
the throughput for several compact set representations as
the number of threads is increased. Bloom32 and V ector32
are implemented as atomic bit masking operations on a sin-
gle word. As their names suggest, the others (Bloom128,
V ector128, V ector256) required multiple words to represent.

Figure 6: Comparison of compact set representations: bit vectors and Bloom filters of various sizes. The

graph on the left is a linear-scale view of data for few numbers of threads; on the right is a logarithmic view

of all numbers of threads.

When there are few threads (the graph on the left) the
simple word bit vector V ector32 dominates. With more
threads, the graph to the right shows how the situation
changes. First, V ector32 and V ector128 cannot represent
more threads than the number of available bits. More-
over, with 128 threads, the space overhead of V ector128
and V ector256 is high and the performance suffers. Beyond
8 threads, Bloom32 continues to outperform all other rep-
resentations. Bloom32 shows how Bloom filters can, unlike
the vector representations, compactly represent few thread
identifiers taken from a large domain.

We note several experimental limitations. On the plat-
form that we used, transactions happen so quickly that it
was often difficult to choose parameters which generated in-
terleaved executions (excluding the above examples).

Second, we found that Dreadlocks detected deadlocks
even when a canonical order was chosen. Many of the dead-
locks turned out to be memory consistency issues. We re-
solved this with memory barriers, at the cost of a slight per-
formance degradation. The remaining deadlocks arise when
a single thread executes multiple transactions: propagation
delays cause false positive deadlocks when a thread finds its
own identifier in the digest of an expired transaction. We
could mitigate this by using transaction IDs, but then had
to use Bloom filters to represent the larger domain.

While the performance improvement shown in this eval-
uation is modest, we believe that much of the performance
is dominated by other factors such as the TL2 infrastruc-
ture and our implementation of transactional boosting. In
a more bare-bones environment, such as an implementation
of McRT [17], we expect higher performance gains.

9. RELATED WORK
There is an extensive amount of literature on deadlock

detection in both the distributed systems and the database
communities. Good survey papers are [19] and [12], respec-
tively. Most dynamic deadlock detection algorithms involve
“probe” messages which find cycles in the implicit waits-for
graph of threads and resources. Others maintain an explicit
form of the waits-for graph, and seek efficient algorithms

for detecting cycles. By contrast our work is based on per-
thread digests, which are transitive closures of portions of
the waits-for graph. We thus avoid the need for elaborate
probing mechanisms or large explicit waits-for graphs.

The closest approach to ours is Scott’s work on abortable
spin locks[18]. This work complements ours. Scott’s prior
work describes how to manage a queue lock that allows
thread to abandon requests (for any reason), while ours de-
scribes how to decide efficiently when to abandon such a
request.

Detection Alternatives. As discussed in the intro-
duction, modern STM implementations, such as TL2 [5] and
Intel’s McRT [17], face deadlock challenges when transac-
tions do not write to memory locations in a canonical order.
These implementations internally use strategies such as the
one by Ennals [7] based on locking, which has been shown [6]
to out-perform non-blocking techniques. To the best of our
knowledge, all such implementations simply use timeouts to
recover from deadlock. It is interesting to note that in the
case of TL2, deadlock avoidance is possible. TL2 collects
a transaction’s write set and applies it at commit time, ac-
quiring locks for each write location. These locks could be
acquired in canonical order. So deadlock avoidance seems to
be so expensive that it is eschewed even when it is possible.

Bloom Filters. When used at scale, our work is a
novel application of Bloom filters [1], which have been widely
studied. Broder and Mitzenmacher provide an extensive sur-
vey [2]. In general, our technique requires threads (or locks)
to maintain set membership information. As discussed in
Section 5, implementations may use Bloom filters to repre-
sent Sets.

Static Analysis Techniques. Dynamic deadlock de-
tection techniques such as Dreadlocks permit execution
paths which lead to deadlock and then leverage existing
code paths to abort. By contrast, static techniques are
generally applied to programs for which deadlock is fatal.
Dynamic approaches approximate by permitting false posi-
tives, whereas static analysis approximate with potentially
excessive mutual exclusion.

Recent work on static deadlock detection includes the
following. Claudio DeMartini et al. [4] detect deadlocks

in Java programs by translating source code into a formal
PROMELA [15] model and then using the SPIN tool [10] to
check for error states that correspond to deadlock. Dead-
locks can also be statically detected in programs for which
there is a UML diagram, as show by Kaveh and Emmerich
[11]. The authors translate UML diagrams into process alge-
bras and then use model checking to detect potential dead-
lock. Deadlock can be detected in Ada-like programs using
Petri nets, as shown by Murata et al. [16]. Finally, Corbett
summarizes [3] earlier static approaches.

Other forms of deadlock. Deadlock detection also
applies to I/O. Recent work by Li et al. [13] describes how to
use speculative execution to determine which I/O resources
a given process is waiting for. In the domain of MPI, there
are certain communication paradigms which lead to dead-
lock such as two threads awaiting messages which were never
sent. Detecting such alternative forms of deadlock is dis-
cussed in [20, 14].

10. CONCLUSION
We have presented Dreadlocks, an efficient spin lock for

shared-memory multiprocessor which detects deadlock. The
algorithm uses per-thread (or per-resource) transitive clo-
sures over portions of the waits-for graph. Our algorithm
improves over previous deadlock detection strategies which
either maintained an explicit waits-for graph or consisted of
elaborate probing mechanisms. We showed how to apply our
algorithm to build a test-and-test-and-set lock which aborts
when deadlock is detected.

One particularly useful domain is modern implementa-
tions of Software Transactional Memory, which currently use
timeouts to resolve deadlock. We have shown that Dread-

locks outperforms timeouts in many cases, and rarely does
worse.

There are many promising directions for future work. Are
there more efficient ways to represent sets? When does it
make sense to keep track of locks, and when to keep track
of threads?

Acknowledgments
This work was funded by NSF grant 0410042, and grants
from Sun Microsystems, Microsoft, and Intel.

11. REFERENCES
[1] Bloom, B. H. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM
13, 7 (1970), 422–426.

[2] Broder, A., and Mitzenmacher, M. Network
Applications of Bloom Filters: A Survey. Internet
Mathematics 1, 4 (2004), 485–509.

[3] Corbett, J. C. Evaluating deadlock detection
methods for concurrent software. IEEE Trans. Softw.
Eng. 22, 3 (1996), 161–180.

[4] DeMartini, C., Iosif, R., and Sisto, R. A deadlock
detection tool for concurrent java programs. Softw.
Pract. Exper. 29, 7 (1999), 577–603.

[5] Dice, D., Shalev, O., and Shavit, N. Transactional
locking II. In Proceedings of the 20th International
Symposium on Distributed Computing (DISC ’06)
(September 2006).

[6] Dice, D., and Shavit, N. What really makes
transactions fast. ACM SIGPLAN Workshop on
Transactional Computing, Ottawa, ON, Canada, June
(2006).

[7] Ennals, R. Software transactional memory should
not be obstruction-free. Unpublished manuscript, Intel
Research Cambridge (2005).

[8] Herlihy, M., and Koskinen, E. Transactional
boosting: A methodology for highly concurrent
transactional objects. In Proceedings of the 13th ACM
SIGPLAN symposium on Principles and practice of
parallel programming (PPoPP ’08) (2008).

[9] Herlihy, M. P., and Wing, J. M. Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS) 12, 3 (1990), 463–492.

[10] Holzmann, G. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2004.

[11] Kaveh, N., and Emmerich, W. Deadlock detection
in distribution object systems. SIGSOFT Softw. Eng.
Notes 26, 5 (2001), 44–51.

[12] Knapp, E. Deadlock detection in distributed
databases. ACM Comput. Surv. 19, 4 (1987), 303–328.

[13] Li, T., Ellis, C. S., Lebeck, A. R., and Sorin,

D. J. Pulse: a dynamic deadlock detection mechanism
using speculative execution. In ATEC’05: Proceedings
of the USENIX Annual Technical Conference 2005 on
USENIX Annual Technical Conference (Berkeley, CA,
USA, 2005), USENIX Association, pp. 3–3.

[14] Luecke, G., Zou, Y., Coyle, J., Hoekstra, J.,

and Kraeva, M. Deadlock detection in MPI
programs. Concurrency and Computation: Practice
and Experience 14, 11 (2002), 911–932.

[15] Mikk, E., Lakhnech, Y., Siegel, M., and

Holzmann, G. Implementing statecharts in
PROMELA/SPIN. Industrial Strength Formal
Specification Techniques, 1998. Proceedings. 2nd IEEE
Workshop on (1998), 90–101.

[16] Murata, T., Shenker, B., and Shatz, S. Detection
of ada static deadlocks using petri net invariants.
Transactions on Software Engineering 15, 3 (Mar
1989), 314–326.

[17] Saha, B., Adl-Tabatabai, A., Hudson, R., Minh,

C., and Hertzberg, B. McRT-STM: a high
performance software transactional memory system for
a multi-core runtime. Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and Practice of
Parallel Programming (PPOPP ’06) (2006), 187–197.

[18] Scott, M. L. Non-blocking timeout in scalable
queue-based spin locks. In PODC ’02: Proceedings of
the twenty-first annual symposium on Principles of
distributed computing (New York, NY, USA, 2002),
ACM Press, pp. 31–40.

[19] Singhal, M. Deadlock detection in distributed
systems. Computer 22, 11 (1989), 37–48.

[20] Vetter, J. S., and de Supinski, B. R. Dynamic
software testing of mpi applications with umpire. sc
00 (2000), 51.

